Turbulent Mixing in a Deep Fracture Zone on the Mid-Atlantic Ridge

Turbulent Mixing in a Deep Fracture Zone on the Mid-Atlantic Ridge AbstractMidocean ridge fracture zones channel bottom waters in the eastern Brazil Basin in regions of intensified deep mixing. The mechanisms responsible for the deep turbulent mixing inside the numerous midocean fracture zones, whether affected by the local or the nonlocal canyon topography, are still subject to debate. To discriminate those mechanisms and to discern the canyon mean flow, two moorings sampled a deep canyon over and away from a sill/contraction. A 2-layer exchange flow, accelerated at the sill, transports 0.04–0.10-Sv (1 Sv ≡ 106 m3 s−1) up canyon in the deep layer. At the sill, the dissipation rate of turbulent kinetic energy ε increases as measured from microstructure profilers and as inferred from a parameterization of vertical kinetic energy. Cross-sill density and microstructure transects reveal an overflow potentially hydraulically controlled and modulated by fortnightly tides. During spring to neap tides, ε varies from O(10−9) to O(10−10) W kg−1 below 3500 m around the 2-layer interface. The detection of temperature overturns during tidal flow reversal, which almost fully opposes the deep up-canyon mean flow, confirms the canyon middepth enhancement of ε. The internal tide energy flux, particularly enhanced at the sill, compares with the lower-layer energy loss across the sill. Throughout the canyon away from the sill, near-inertial waves with downward-propagating energy dominate the internal wave field. The present study underlines the intricate pattern of the deep turbulent mixing affected by the mean flow, internal tides, and near-inertial waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Turbulent Mixing in a Deep Fracture Zone on the Mid-Atlantic Ridge

Loading next page...
 
/lp/ams/turbulent-mixing-in-a-deep-fracture-zone-on-the-mid-atlantic-ridge-h2ycX0o7ms
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
D.O.I.
10.1175/JPO-D-16-0264.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMidocean ridge fracture zones channel bottom waters in the eastern Brazil Basin in regions of intensified deep mixing. The mechanisms responsible for the deep turbulent mixing inside the numerous midocean fracture zones, whether affected by the local or the nonlocal canyon topography, are still subject to debate. To discriminate those mechanisms and to discern the canyon mean flow, two moorings sampled a deep canyon over and away from a sill/contraction. A 2-layer exchange flow, accelerated at the sill, transports 0.04–0.10-Sv (1 Sv ≡ 106 m3 s−1) up canyon in the deep layer. At the sill, the dissipation rate of turbulent kinetic energy ε increases as measured from microstructure profilers and as inferred from a parameterization of vertical kinetic energy. Cross-sill density and microstructure transects reveal an overflow potentially hydraulically controlled and modulated by fortnightly tides. During spring to neap tides, ε varies from O(10−9) to O(10−10) W kg−1 below 3500 m around the 2-layer interface. The detection of temperature overturns during tidal flow reversal, which almost fully opposes the deep up-canyon mean flow, confirms the canyon middepth enhancement of ε. The internal tide energy flux, particularly enhanced at the sill, compares with the lower-layer energy loss across the sill. Throughout the canyon away from the sill, near-inertial waves with downward-propagating energy dominate the internal wave field. The present study underlines the intricate pattern of the deep turbulent mixing affected by the mean flow, internal tides, and near-inertial waves.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off