Tropical Deep Convection and Ozone Formation

Tropical Deep Convection and Ozone Formation Theoretical studies, aircraft, and space-borne measurements show that deep convection can be an effective conduit for introducing reactive surface pollutants into the free troposphere. The chemical consequences of convective systems are complex. For example, sensitivity studies show potential for both enhancement and diminution of ozone formation. Field observations of cloud and mesoscale phenomena have been investigated with the Goddard Cumulus Ensemble and Tropospheric Chemistry models. Case studies from the tropical ABLE 2, STEP, and TRACE-A experiments show that free tropospheric ozone formation should increase when deep convection and urban or biomass burning pollution coincide, and decrease slightly in regions relatively free of ozone precursors (often marine). Confirmation of post-convective ozone enhancement in the free troposphere over Brazil, the Atlantic, and southern Africa was a major accomplishment of the SeptemberOctober 1992 TRACE-A (Transport and Atmospheric Chemistry near the EquatorAtlantic) aircraft mission. A flight dedicated to cloud outflow showed that deep convection led to a factor of 34 increase in upper tropospheric ozone formation downwind. Analysis of ozonesondes during TRACE-A was consistent with 2030 of seasonally enhanced ozone over the South Atlantic being supplied by a combination of biomass burning emissions, lightning, and deep convection over South America. With the Tropics the critical region for troposphere-to-stratosphere transfer of pollutants, these results have implications for the total ozone budget. Cloud-scale analyses will guide the development of more realistic regional and global chemical-transport models to assess the full impact of deep convection on atmospheric chemical composition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/tropical-deep-convection-and-ozone-formation-V9MUGCKHZE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1997)078<1043:TDCAOF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Theoretical studies, aircraft, and space-borne measurements show that deep convection can be an effective conduit for introducing reactive surface pollutants into the free troposphere. The chemical consequences of convective systems are complex. For example, sensitivity studies show potential for both enhancement and diminution of ozone formation. Field observations of cloud and mesoscale phenomena have been investigated with the Goddard Cumulus Ensemble and Tropospheric Chemistry models. Case studies from the tropical ABLE 2, STEP, and TRACE-A experiments show that free tropospheric ozone formation should increase when deep convection and urban or biomass burning pollution coincide, and decrease slightly in regions relatively free of ozone precursors (often marine). Confirmation of post-convective ozone enhancement in the free troposphere over Brazil, the Atlantic, and southern Africa was a major accomplishment of the SeptemberOctober 1992 TRACE-A (Transport and Atmospheric Chemistry near the EquatorAtlantic) aircraft mission. A flight dedicated to cloud outflow showed that deep convection led to a factor of 34 increase in upper tropospheric ozone formation downwind. Analysis of ozonesondes during TRACE-A was consistent with 2030 of seasonally enhanced ozone over the South Atlantic being supplied by a combination of biomass burning emissions, lightning, and deep convection over South America. With the Tropics the critical region for troposphere-to-stratosphere transfer of pollutants, these results have implications for the total ozone budget. Cloud-scale analyses will guide the development of more realistic regional and global chemical-transport models to assess the full impact of deep convection on atmospheric chemical composition.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 9, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial