Tropical Cyclones in Rotating Radiative–Convective Equilibrium with Coupled SST

Tropical Cyclones in Rotating Radiative–Convective Equilibrium with Coupled SST AbstractTropical cyclones are studied under the idealized framework of rotating radiative–convective equilibrium, achieved in a large doubly periodic f plane by coupling the column physics of a global atmospheric model to rotating hydrostatic dynamics. Unlike previous studies that prescribe uniform sea surface temperature (SST) over the domain, SSTs are now predicted by coupling the atmosphere to a simple slab ocean model. With coupling, SSTs under the eyewall region of tropical cyclones (TCs) become cooler than the environment. However, the domain still fills up with multiple long-lived TCs in all cases examined, including at the limit of the very small depth of the slab. The cooling of SSTs under the eyewall increases as the depth of the slab ocean layer decreases but levels off at roughly 6.5 K as the depth approaches zero. At the eyewall, the storm interior is decoupled from the cooler surface and moist entropy is no longer well mixed along the angular momentum surface in the boundary layer. TC intensity is reduced from the potential intensity computed without the cooling, but the intensity reduction is smaller than that estimated by a potential intensity taking into account the cooling and assuming that moist entropy is well mixed along angular momentum surfaces within the atmospheric boundary layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Tropical Cyclones in Rotating Radiative–Convective Equilibrium with Coupled SST

Loading next page...
 
/lp/ams/tropical-cyclones-in-rotating-radiative-convective-equilibrium-with-3tjkzsAId0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0195.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTropical cyclones are studied under the idealized framework of rotating radiative–convective equilibrium, achieved in a large doubly periodic f plane by coupling the column physics of a global atmospheric model to rotating hydrostatic dynamics. Unlike previous studies that prescribe uniform sea surface temperature (SST) over the domain, SSTs are now predicted by coupling the atmosphere to a simple slab ocean model. With coupling, SSTs under the eyewall region of tropical cyclones (TCs) become cooler than the environment. However, the domain still fills up with multiple long-lived TCs in all cases examined, including at the limit of the very small depth of the slab. The cooling of SSTs under the eyewall increases as the depth of the slab ocean layer decreases but levels off at roughly 6.5 K as the depth approaches zero. At the eyewall, the storm interior is decoupled from the cooler surface and moist entropy is no longer well mixed along the angular momentum surface in the boundary layer. TC intensity is reduced from the potential intensity computed without the cooling, but the intensity reduction is smaller than that estimated by a potential intensity taking into account the cooling and assuming that moist entropy is well mixed along angular momentum surfaces within the atmospheric boundary layer.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off