Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts

Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts Trustworthy probabilistic projections of regional climate are essential for society to plan for future climate change, and yet, by the nonlinear nature of climate, finite computational models of climate are inherently deficient in their ability to simulate regional climatic variability with complete accuracy. How can we determine whether specific regional climate projections may be untrustworthy in the light of such generic deficiencies? A calibration method is proposed whose basis lies in the emerging notion of seamless prediction. Specifically, calibrations of ensemblebased climate change probabilities are derived from analyses of the statistical reliability of ensemblebased forecast probabilities on seasonal time scales. The method is demonstrated by calibrating probabilistic projections from the multimodel ensembles used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), based on reliability analyses from the seasonal forecast Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) dataset. The focus in this paper is on climate change projections of regional precipitation, though the method is more general. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts

Loading next page...
 
/lp/ams/toward-seamless-prediction-calibration-of-climate-change-projections-7aM0njYJ2x
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-89-4-459
Publisher site
See Article on Publisher Site

Abstract

Trustworthy probabilistic projections of regional climate are essential for society to plan for future climate change, and yet, by the nonlinear nature of climate, finite computational models of climate are inherently deficient in their ability to simulate regional climatic variability with complete accuracy. How can we determine whether specific regional climate projections may be untrustworthy in the light of such generic deficiencies? A calibration method is proposed whose basis lies in the emerging notion of seamless prediction. Specifically, calibrations of ensemblebased climate change probabilities are derived from analyses of the statistical reliability of ensemblebased forecast probabilities on seasonal time scales. The method is demonstrated by calibrating probabilistic projections from the multimodel ensembles used in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), based on reliability analyses from the seasonal forecast Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) dataset. The focus in this paper is on climate change projections of regional precipitation, though the method is more general.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Apr 11, 2008

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial