Time Series Models Adoptable for Forecasting Nile Floods and Ethiopian Rainfalls

Time Series Models Adoptable for Forecasting Nile Floods and Ethiopian Rainfalls Long-term rainfall forecasting is used in making economic and agricultural decisions in many countries. It may also be a tool in minimizing the devastation resulting from recurrent droughts. To be able to forecast the total annual rainfall or the levels of seasonal floods, a class of models has first been chosen. The model parameters have then been estimated with an appropriate parameter estimation algorithm. Finally, diagnostic tests have been performed to verify the adequacy of the model. These are the general principles of system identification, which is the most crucial part of the forecasting procedure. In this paper several sets of data have been studied using different statistical procedures. The examined data include a historical 835-year record representing the levels of the seasonal Nile floods in Cairo, Egypt, during the period A.D. 6221457. These readings were originally carried out by the Arabs to a great degree of accuracy in order to be used in estimating yearly taxes or Zacat (Islamic duties). The observations also comprise recent total annual rainfall data over Addis Ababa (Ethiopia) (19071984), the total annual discharges of Ethiopian rivers (including the river Sobat discharges at Hillet Doleib, Blue Nile discharge at Roseris, river Dinder, river Rahar, and river Atbara), equatorial lake plateau supply as contributed at Aswan during the period 19121982, and the total annual discharges at Aswan during the period 18711982. Periodograms have been used to uncover possible periodicities. Trends of rainfall and discharges of some rivers of east and central Africa have been also estimated.Using the first half of the available record, two autoregressive integrated moving average (ARIMA) time series models have been identified, one for the levels of the seasonal Nile floods in Cairo, the second to model the annual rainfall over Ethiopia. The time series models have been applied in 1-year-ahead forecasting to the other half of the available record and give fairly promising results, thus indicating the adequacy of the fitted models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Time Series Models Adoptable for Forecasting Nile Floods and Ethiopian Rainfalls

Loading next page...
 
/lp/ams/time-series-models-adoptable-for-forecasting-nile-floods-and-ethiopian-d6OD4dUwr8
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1994)075<0083:TSMAFF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Long-term rainfall forecasting is used in making economic and agricultural decisions in many countries. It may also be a tool in minimizing the devastation resulting from recurrent droughts. To be able to forecast the total annual rainfall or the levels of seasonal floods, a class of models has first been chosen. The model parameters have then been estimated with an appropriate parameter estimation algorithm. Finally, diagnostic tests have been performed to verify the adequacy of the model. These are the general principles of system identification, which is the most crucial part of the forecasting procedure. In this paper several sets of data have been studied using different statistical procedures. The examined data include a historical 835-year record representing the levels of the seasonal Nile floods in Cairo, Egypt, during the period A.D. 6221457. These readings were originally carried out by the Arabs to a great degree of accuracy in order to be used in estimating yearly taxes or Zacat (Islamic duties). The observations also comprise recent total annual rainfall data over Addis Ababa (Ethiopia) (19071984), the total annual discharges of Ethiopian rivers (including the river Sobat discharges at Hillet Doleib, Blue Nile discharge at Roseris, river Dinder, river Rahar, and river Atbara), equatorial lake plateau supply as contributed at Aswan during the period 19121982, and the total annual discharges at Aswan during the period 18711982. Periodograms have been used to uncover possible periodicities. Trends of rainfall and discharges of some rivers of east and central Africa have been also estimated.Using the first half of the available record, two autoregressive integrated moving average (ARIMA) time series models have been identified, one for the levels of the seasonal Nile floods in Cairo, the second to model the annual rainfall over Ethiopia. The time series models have been applied in 1-year-ahead forecasting to the other half of the available record and give fairly promising results, thus indicating the adequacy of the fitted models.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 13, 1994

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off