Third COMPARE Workshop: A Model Intercomparison Experiment of Tropical Cyclone Intensity and Track Prediction

Third COMPARE Workshop: A Model Intercomparison Experiment of Tropical Cyclone Intensity and... The Third Comparison of Mesoscale Prediction and Research Experiment (COMPARE) workshop was held in Tokyo, Japan, on 1315 December 1999, cosponsored by the Japan Meteorological Agency (JMA), Japan Science and Technology Agency, and the World Meteorological Organization. The third case of COMPARE focuses on an event of explosive tropical cyclone Typhoon Flo (9019) development that occurred during the cooperative three field experiments, the Tropical Cyclone Motion experiment 1990, Special Experiment Concerning Recurvature and Unusual Motion, and TYPHOON-90, conducted in the western North Pacific in August and September 1990. Fourteen models from nine countries have participated in at least a part of a set of experiments using a combination of four initial conditions provided and three horizontal resolutions. The resultant forecasts were collected, processed, and verified with analyses and observational data at JMA. Archived datasets have been prepared to be distributed to participating members for use in further evaluation studies.In the workshop, preliminary conclusions from the evaluation study were presented and discussed in the light of initiatives of the experiment and from the viewpoints of tropical cyclone experts. Initial conditions, depending on both large-scale analyses and vortex bogusing, have a large impact on tropical cyclone intensity predictions. Some models succeeded in predicting the explosive deepening of the target typhoon at least qualitatively in terms of the time evolution of central pressure. Horizontal grid spacing has a very large impact on tropical cyclone intensity prediction, while the impact of vertical resolution is less clear, with some models being very sensitive and others less so. The structure of and processes in the eyewall clouds with subsidence inside as well as boundary layer and moist physical processes are considered important in the explosive development of tropical cyclones. Follow-up research activities in this case were proposed to examine possible working hypotheses related to the explosive development.New strategies for selection of future COMPARE cases were worked out, including seven suitability requirements to be met by candidate cases. The VORTEX95 case was withdrawn as a candidate, and two other possible cases were presented and discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/third-compare-workshop-a-model-intercomparison-experiment-of-tropical-r0ZCp0Wi8a
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2001)082<2007:MSTCWA>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

The Third Comparison of Mesoscale Prediction and Research Experiment (COMPARE) workshop was held in Tokyo, Japan, on 1315 December 1999, cosponsored by the Japan Meteorological Agency (JMA), Japan Science and Technology Agency, and the World Meteorological Organization. The third case of COMPARE focuses on an event of explosive tropical cyclone Typhoon Flo (9019) development that occurred during the cooperative three field experiments, the Tropical Cyclone Motion experiment 1990, Special Experiment Concerning Recurvature and Unusual Motion, and TYPHOON-90, conducted in the western North Pacific in August and September 1990. Fourteen models from nine countries have participated in at least a part of a set of experiments using a combination of four initial conditions provided and three horizontal resolutions. The resultant forecasts were collected, processed, and verified with analyses and observational data at JMA. Archived datasets have been prepared to be distributed to participating members for use in further evaluation studies.In the workshop, preliminary conclusions from the evaluation study were presented and discussed in the light of initiatives of the experiment and from the viewpoints of tropical cyclone experts. Initial conditions, depending on both large-scale analyses and vortex bogusing, have a large impact on tropical cyclone intensity predictions. Some models succeeded in predicting the explosive deepening of the target typhoon at least qualitatively in terms of the time evolution of central pressure. Horizontal grid spacing has a very large impact on tropical cyclone intensity prediction, while the impact of vertical resolution is less clear, with some models being very sensitive and others less so. The structure of and processes in the eyewall clouds with subsidence inside as well as boundary layer and moist physical processes are considered important in the explosive development of tropical cyclones. Follow-up research activities in this case were proposed to examine possible working hypotheses related to the explosive development.New strategies for selection of future COMPARE cases were worked out, including seven suitability requirements to be met by candidate cases. The VORTEX95 case was withdrawn as a candidate, and two other possible cases were presented and discussed.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Sep 13, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off