The West Coast Picket Fence Experiment during STORM-FEST

The West Coast Picket Fence Experiment during STORM-FEST Mesoscale weather systems that develop in the central United States are often forced by environmental features that have formed far upstream over the conventional data-sparse Pacific Ocean. Although remotely sensed observations, such as satellite retrievals, are becoming more numerous and accurate, they still may not have the resolution necessary to enhance global model-based analyses and forecasts over this region. These global model products are the primary source of lateral boundary conditions that have been found to have large impacts on the downstream forecast skill of regional mesoscale models over the United States. In addition, the temporal and spatial resolution of the current rawinsonde network along the West Coast may not be sufficient to detect and measure mesoscale flow features as they move inland. During the STORM-FEST experiment in FebruaryMarch 1992, a Picket Fence of seven special rawinsonde stations were interspersed among the seven regular rawinsonde sites from Port Hardy, British Columbia, to San Diego, California. All sites obtained observations every 3 h rather than the normal 12 h. The objective of the Picket Fence was to examine the feasibility of using extra observations in time and space to improve upstream boundary conditions for forecasts of mesoscale weather events in the central United States. As a first step in examining the potential boundary condition impact of the Picket Fence, fluxes of mass, heat, momentum, potential energy, kinetic energy, and moisture across the West Coast resolved with various spatial and temporal combinations of Picket Fence data are compared with the 12-h regular upper-air sites as the standard. When a wave system crossed the middle of the Picket Fence, significantly different fluxes were calculated with the full spatial and 3-h Picket Fence observations. For other systems that crossed near the margins of the Picket Fence, only small changes were detected by the additional observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The West Coast Picket Fence Experiment during STORM-FEST

Loading next page...
 
/lp/ams/the-west-coast-picket-fence-experiment-during-storm-fest-nIg8wlMmmT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1995)076<1741:TWCPFE>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Mesoscale weather systems that develop in the central United States are often forced by environmental features that have formed far upstream over the conventional data-sparse Pacific Ocean. Although remotely sensed observations, such as satellite retrievals, are becoming more numerous and accurate, they still may not have the resolution necessary to enhance global model-based analyses and forecasts over this region. These global model products are the primary source of lateral boundary conditions that have been found to have large impacts on the downstream forecast skill of regional mesoscale models over the United States. In addition, the temporal and spatial resolution of the current rawinsonde network along the West Coast may not be sufficient to detect and measure mesoscale flow features as they move inland. During the STORM-FEST experiment in FebruaryMarch 1992, a Picket Fence of seven special rawinsonde stations were interspersed among the seven regular rawinsonde sites from Port Hardy, British Columbia, to San Diego, California. All sites obtained observations every 3 h rather than the normal 12 h. The objective of the Picket Fence was to examine the feasibility of using extra observations in time and space to improve upstream boundary conditions for forecasts of mesoscale weather events in the central United States. As a first step in examining the potential boundary condition impact of the Picket Fence, fluxes of mass, heat, momentum, potential energy, kinetic energy, and moisture across the West Coast resolved with various spatial and temporal combinations of Picket Fence data are compared with the 12-h regular upper-air sites as the standard. When a wave system crossed the middle of the Picket Fence, significantly different fluxes were calculated with the full spatial and 3-h Picket Fence observations. For other systems that crossed near the margins of the Picket Fence, only small changes were detected by the additional observations.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 21, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off