The Value of Wind Profiler Data in U.S. Weather Forecasting

The Value of Wind Profiler Data in U.S. Weather Forecasting An assessment of the value of data from the NOAA Profiler Network (NPN) on weather forecasting is presented. A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied in order to assess the relative importance of the profiler data for short-range wind forecasts. Average verification statistics from a 13-day cold-season test period indicate that the profiler data have a positive impact on short-range (312 h) forecasts over the RUC domain containing the lower 48 United States, which are strongest at the 3-h projection over a central U.S. subdomain that includes most of the profiler sites, as well as downwind of the profiler observations over the eastern United States. Overall, profiler data reduce wind forecast errors at all levels from 850 to 150 hPa, especially below 300 hPa where there are relatively few automated aircraft observations. At night when fewer commercial aircraft are flying, profiler data also contribute strongly to more accurate 3-h forecasts, including near-tropopause maximum wind levels. For the test period, the profiler data contributed up to 2030 (at 700 hPa) of the overall reduction of 3-h wind forecast error by all data sources combined. Inclusion of wind profiler data also reduced 3-h errors for height, relative humidity, and temperature by 5-15, averaged over different vertical levels. Time series and statistics from large-error events demonstrate that the impact of profiler data may be much larger in peak error situations.Three data assimilation case studies from cold and warm seasons are presented that illustrate the value of the profiler observations for improving weather forecasts. The first case study indicates that inclusion of profiler data in the RUC model runs for the 3 May 1999 Oklahoma tornado outbreak improved model guidance of convective available potential energy (CAPE), 300-hPa wind, and precipitation in southwestern Oklahoma at the onset of the event. In the second case study, inclusion of profiler data led to better RUC precipitation forecasts associated with a severe snow and ice storm that occurred over the central plains of the United States in February 2001. A third case study describes the effect of profiler data for a tornado event in Oklahoma on 8 May 2003. Summaries of National Weather Service (NWS) forecaster use of profiler data in daily operations, although subjective, support the results from these case studies and the statistical forecast model impact study in the broad sense that profiler data contribute significantly to improved short-range forecasts over the central United States where these observations currently exist. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The Value of Wind Profiler Data in U.S. Weather Forecasting

Loading next page...
 
/lp/ams/the-value-of-wind-profiler-data-in-u-s-weather-forecasting-bcd0FuKcaF
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-85-12-1871
Publisher site
See Article on Publisher Site

Abstract

An assessment of the value of data from the NOAA Profiler Network (NPN) on weather forecasting is presented. A series of experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied in order to assess the relative importance of the profiler data for short-range wind forecasts. Average verification statistics from a 13-day cold-season test period indicate that the profiler data have a positive impact on short-range (312 h) forecasts over the RUC domain containing the lower 48 United States, which are strongest at the 3-h projection over a central U.S. subdomain that includes most of the profiler sites, as well as downwind of the profiler observations over the eastern United States. Overall, profiler data reduce wind forecast errors at all levels from 850 to 150 hPa, especially below 300 hPa where there are relatively few automated aircraft observations. At night when fewer commercial aircraft are flying, profiler data also contribute strongly to more accurate 3-h forecasts, including near-tropopause maximum wind levels. For the test period, the profiler data contributed up to 2030 (at 700 hPa) of the overall reduction of 3-h wind forecast error by all data sources combined. Inclusion of wind profiler data also reduced 3-h errors for height, relative humidity, and temperature by 5-15, averaged over different vertical levels. Time series and statistics from large-error events demonstrate that the impact of profiler data may be much larger in peak error situations.Three data assimilation case studies from cold and warm seasons are presented that illustrate the value of the profiler observations for improving weather forecasts. The first case study indicates that inclusion of profiler data in the RUC model runs for the 3 May 1999 Oklahoma tornado outbreak improved model guidance of convective available potential energy (CAPE), 300-hPa wind, and precipitation in southwestern Oklahoma at the onset of the event. In the second case study, inclusion of profiler data led to better RUC precipitation forecasts associated with a severe snow and ice storm that occurred over the central plains of the United States in February 2001. A third case study describes the effect of profiler data for a tornado event in Oklahoma on 8 May 2003. Summaries of National Weather Service (NWS) forecaster use of profiler data in daily operations, although subjective, support the results from these case studies and the statistical forecast model impact study in the broad sense that profiler data contribute significantly to improved short-range forecasts over the central United States where these observations currently exist.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Dec 24, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off