The Transient Response of Ice Shelf Melting to Ocean Change

The Transient Response of Ice Shelf Melting to Ocean Change AbstractIdealized modeling studies have shown that the melting of ice shelves varies as a quadratic function of ocean temperature. However, this result is the equilibrium response, derived from steady ice–ocean simulations subjected to a fixed ocean forcing. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated with a range of periods. The results show that the residence time of water in the subice cavity offers a critical time scale. When the forcing varies slowly (period of oscillation ≫ residence time), the cavity is fully flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. Between these two extremes, an intermediate regime occurs in which melting follows the equilibrium response during the cooling phase of the forcing cycle, but deviates during warming. The results show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times and hence a short time scale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen Seas, Antarctica, are highly sensitive to ocean change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

The Transient Response of Ice Shelf Melting to Ocean Change

Loading next page...
 
/lp/ams/the-transient-response-of-ice-shelf-melting-to-ocean-change-uhVNCbxZ2R
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0071.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIdealized modeling studies have shown that the melting of ice shelves varies as a quadratic function of ocean temperature. However, this result is the equilibrium response, derived from steady ice–ocean simulations subjected to a fixed ocean forcing. This study considers instead the transient response of melting, using unsteady simulations subjected to forcing conditions that are oscillated with a range of periods. The results show that the residence time of water in the subice cavity offers a critical time scale. When the forcing varies slowly (period of oscillation ≫ residence time), the cavity is fully flushed with forcing anomalies at all stages of the cycle and melting follows the equilibrium response. When the forcing varies rapidly (period ≤ residence time), multiple cold and warm anomalies coexist in the cavity, cancelling each other in the spatial mean and thus inducing a relatively steady melt rate. This implies that all ice shelves have a maximum frequency of ocean variability that can be manifested in melting. Between these two extremes, an intermediate regime occurs in which melting follows the equilibrium response during the cooling phase of the forcing cycle, but deviates during warming. The results show that ice shelves forced by warm water have high melt rates, high equilibrium sensitivity, and short residence times and hence a short time scale over which the equilibrium sensitivity is manifest. The most rapid melting adjustment is induced by warm anomalies that are also saline. Thus, ice shelves in the Amundsen and Bellingshausen Seas, Antarctica, are highly sensitive to ocean change.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial