The THORPEX Interactive Grand Global Ensemble

The THORPEX Interactive Grand Global Ensemble Ensemble forecasting is increasingly accepted as a powerful tool to improve early warnings for high-impact weather. Recently, ensembles combining forecasts from different systems have attracted a considerable level of interest. The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Globa l Ensemble (TIGGE) project, a prominent contribution to THORPEX, has been initiated to enable advanced research and demonstration of the multimodel ensemble concept and to pave the way toward operational implementation of such a system at the international level. The objectives of TIGGE are 1) to facilitate closer cooperation between the academic and operational meteorological communities by expanding the availability of operational products for research, and 2) to facilitate exploring the concept and benefits of multimodel probabilistic weather forecasts, with a particular focus on high-impact weather prediction. Ten operational weather forecasting centers producing daily global ensemble forecasts to 12 weeks ahead have agreed to deliver in nearreal time a selection of forecast data to the TIGGE data archives at the China Meteorological Agency, the European Centre for Medium-Range Weather Forecasts, and the National Center for Atmospheric Research. The volume of data accumulated daily is 245 GB (1.6 million global fields). This is offered to the scientific community as a new resource for research and education. The TIGGE data policy is to make each forecast accessible via the Internet 48 h after it was initially issued by each originating center. Quicker access can also be granted for field experiments or projects of particular interest to the World Weather Research Programme and THORPEX. A few examples of initial results based on TIGGE data are discussed in this paper, and the case is made for additional research in several directions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/the-thorpex-interactive-grand-global-ensemble-Ejgi7KOnPx
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2010BAMS2853.1
Publisher site
See Article on Publisher Site

Abstract

Ensemble forecasting is increasingly accepted as a powerful tool to improve early warnings for high-impact weather. Recently, ensembles combining forecasts from different systems have attracted a considerable level of interest. The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Globa l Ensemble (TIGGE) project, a prominent contribution to THORPEX, has been initiated to enable advanced research and demonstration of the multimodel ensemble concept and to pave the way toward operational implementation of such a system at the international level. The objectives of TIGGE are 1) to facilitate closer cooperation between the academic and operational meteorological communities by expanding the availability of operational products for research, and 2) to facilitate exploring the concept and benefits of multimodel probabilistic weather forecasts, with a particular focus on high-impact weather prediction. Ten operational weather forecasting centers producing daily global ensemble forecasts to 12 weeks ahead have agreed to deliver in nearreal time a selection of forecast data to the TIGGE data archives at the China Meteorological Agency, the European Centre for Medium-Range Weather Forecasts, and the National Center for Atmospheric Research. The volume of data accumulated daily is 245 GB (1.6 million global fields). This is offered to the scientific community as a new resource for research and education. The TIGGE data policy is to make each forecast accessible via the Internet 48 h after it was initially issued by each originating center. Quicker access can also be granted for field experiments or projects of particular interest to the World Weather Research Programme and THORPEX. A few examples of initial results based on TIGGE data are discussed in this paper, and the case is made for additional research in several directions.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Aug 8, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off