The Structure, Evolution, and Dynamics of a Nocturnal Convective System Simulated Using the WRF-ARW Model

The Structure, Evolution, and Dynamics of a Nocturnal Convective System Simulated Using the... AbstractPrevious studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

The Structure, Evolution, and Dynamics of a Nocturnal Convective System Simulated Using the WRF-ARW Model

Loading next page...
 
/lp/ams/the-structure-evolution-and-dynamics-of-a-nocturnal-convective-system-wubB1DQCva
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0360.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious studies have documented a nocturnal maximum in thunderstorm frequency during the summer across the central United States. Forecast skill for these systems remains relatively low and the explanation for this nocturnal maximum is still an area of active debate. This study utilized the WRF-ARW Model to simulate a nocturnal mesoscale convective system that occurred over the southern Great Plains on 3–4 June 2013. A low-level jet transported a narrow corridor of air above the nocturnal boundary layer with convective instability that exceeded what was observed in the daytime boundary layer. The storm was elevated and associated with bores that assisted in the maintenance of the system. Three-dimensional variations in the system’s structure were found along the cold pool, which were examined using convective system dynamics and wave theory. Shallow lifting occurred on the southern flank of the storm. Conversely, the southeastern flank had deep lifting, with favorable integrated vertical shear over the layer of maximum CAPE. The bore assisted in transporting high-CAPE air toward its LFC, and the additional lifting by the density current allowed for deep convection to occur. The bore was not coupled to the convective system and it slowly pulled away, while the convection remained in phase with the density current. These results provide a possible explanation for how convection is maintained at night in the presence of a low-level jet and a stable boundary layer, and emphasize the importance of the three-dimensionality of these systems.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Aug 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off