The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights

The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and... AbstractNorth Africa is the world’s largest source of dust, a large part of which is transported across the Atlantic to the Caribbean and beyond where it can impact radiation and clouds. Many aspects of this transport and its climate effects remain speculative. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE; www.pa.op.dlr.de/saltrace) linked ground-based and airborne measurements with remote sensing and modeling techniques to address these issues in a program that took place in 2013/14. Specific objectives were to 1) characterize the chemical, microphysical, and optical properties of dust in the Caribbean, 2) quantify the impact of physical and chemical changes (“aging”) on the radiation budget and cloud microphysical processes, 3) investigate the meteorological context of transatlantic dust transport, and 4) assess the roles of removal processes during transport.SALTRACE was a German-led initiative involving scientists from Europe, Cabo Verde, the Caribbean, and the United States. The Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR), equipped with a comprehensive aerosol and wind lidar payload, played a central role. Several major dust outbreaks were studied with 86 h of flight time under different conditions, making it by far the most extensive investigation on long-range transported dust ever made.This article presents an overview of SALTRACE and highlights selected results including data from transatlantic flights in coherent air masses separated by more than 4,000-km distance that enabled measurements of transport effects on dust properties. SALTRACE will improve our knowledge on the role of mineral dust in the climate system and provide data for studies on dust interactions with clouds, radiation, and health. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/the-saharan-aerosol-long-range-transport-and-aerosol-cloud-interaction-ai3ilK0GqL
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
eISSN
1520-0477
D.O.I.
10.1175/BAMS-D-15-00142.1
Publisher site
See Article on Publisher Site

Abstract

AbstractNorth Africa is the world’s largest source of dust, a large part of which is transported across the Atlantic to the Caribbean and beyond where it can impact radiation and clouds. Many aspects of this transport and its climate effects remain speculative. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE; www.pa.op.dlr.de/saltrace) linked ground-based and airborne measurements with remote sensing and modeling techniques to address these issues in a program that took place in 2013/14. Specific objectives were to 1) characterize the chemical, microphysical, and optical properties of dust in the Caribbean, 2) quantify the impact of physical and chemical changes (“aging”) on the radiation budget and cloud microphysical processes, 3) investigate the meteorological context of transatlantic dust transport, and 4) assess the roles of removal processes during transport.SALTRACE was a German-led initiative involving scientists from Europe, Cabo Verde, the Caribbean, and the United States. The Falcon research aircraft of the Deutsches Zentrum für Luft- und Raumfahrt (DLR), equipped with a comprehensive aerosol and wind lidar payload, played a central role. Several major dust outbreaks were studied with 86 h of flight time under different conditions, making it by far the most extensive investigation on long-range transported dust ever made.This article presents an overview of SALTRACE and highlights selected results including data from transatlantic flights in coherent air masses separated by more than 4,000-km distance that enabled measurements of transport effects on dust properties. SALTRACE will improve our knowledge on the role of mineral dust in the climate system and provide data for studies on dust interactions with clouds, radiation, and health.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off