The Role of Plant CO2 Physiological Forcing in Shaping Future Daily-Scale Precipitation

The Role of Plant CO2 Physiological Forcing in Shaping Future Daily-Scale Precipitation AbstractContinued anthropogenic CO2 emissions are expected to drive widespread changes in precipitation characteristics. Nonetheless, projections of precipitation change vary considerably at the regional scale between climate models. Here, it is shown that the response of plant physiology to elevated CO2, or CO2 physiological forcing drives widespread hydrologic changes distinct from those associated with CO2 radiative forcing and has a role in shaping regional-scale differences in projected daily-scale precipitation changes. In a suite of simulations with the Community Climate System Model, version 4 (CCSM4), reduced stomatal conductance from projected physiological forcing drives large decreases in transpiration and changes the distribution of daily-scale precipitation within and adjacent to regions of dense vegetation and climatologically high transpiration. When atmospheric conditions are marginally favorable for precipitation, reduced transpiration dries the boundary layer and increases the likelihood of dry day occurrence. In CCSM4, the annual number of dry days increases by upward of 15 days yr−1 over tropical land and the continental midlatitudes. Decreases in transpiration from physiological forcing also increase the number of heavy precipitation events by up to 8 days yr−1 in many tropical forest regions. Despite reductions in the land surface contribution to atmospheric moisture, diminished surface latent heat fluxes warm the forest boundary layer and increase moisture convergence from nearby oceans, enhancing instability. The results suggest that consideration of the radiative impacts of CO2 alone cannot account for projected regional-scale differences in daily precipitation changes, and that CO2 physiological forcing may contribute to differences in projected precipitation characteristics among climate models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Role of Plant CO2 Physiological Forcing in Shaping Future Daily-Scale Precipitation

Loading next page...
 
/lp/ams/the-role-of-plant-co2-physiological-forcing-in-shaping-future-daily-t6gpbZYSWw
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0603.1
Publisher site
See Article on Publisher Site

Abstract

AbstractContinued anthropogenic CO2 emissions are expected to drive widespread changes in precipitation characteristics. Nonetheless, projections of precipitation change vary considerably at the regional scale between climate models. Here, it is shown that the response of plant physiology to elevated CO2, or CO2 physiological forcing drives widespread hydrologic changes distinct from those associated with CO2 radiative forcing and has a role in shaping regional-scale differences in projected daily-scale precipitation changes. In a suite of simulations with the Community Climate System Model, version 4 (CCSM4), reduced stomatal conductance from projected physiological forcing drives large decreases in transpiration and changes the distribution of daily-scale precipitation within and adjacent to regions of dense vegetation and climatologically high transpiration. When atmospheric conditions are marginally favorable for precipitation, reduced transpiration dries the boundary layer and increases the likelihood of dry day occurrence. In CCSM4, the annual number of dry days increases by upward of 15 days yr−1 over tropical land and the continental midlatitudes. Decreases in transpiration from physiological forcing also increase the number of heavy precipitation events by up to 8 days yr−1 in many tropical forest regions. Despite reductions in the land surface contribution to atmospheric moisture, diminished surface latent heat fluxes warm the forest boundary layer and increase moisture convergence from nearby oceans, enhancing instability. The results suggest that consideration of the radiative impacts of CO2 alone cannot account for projected regional-scale differences in daily precipitation changes, and that CO2 physiological forcing may contribute to differences in projected precipitation characteristics among climate models.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off