The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris–Euphrates Headwaters

The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris–Euphrates Headwaters AbstractRainfall variability in the Tigris–Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEP–DOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (1983–2013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRF’s ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50% of interannual variability in both WRF and observations for April and October precipitation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris–Euphrates Headwaters

Loading next page...
 
/lp/ams/the-role-of-low-level-terrain-induced-jets-in-rainfall-variability-in-dY9i0fkLzm
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0165.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRainfall variability in the Tigris–Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEP–DOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (1983–2013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRF’s ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50% of interannual variability in both WRF and observations for April and October precipitation.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Mar 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off