The Regional Water Cycle and Heavy Spring Rainfall in Iowa: Observational and Modeling Analyses from the IFloodS Campaign

The Regional Water Cycle and Heavy Spring Rainfall in Iowa: Observational and Modeling Analyses... AbstractThe regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

The Regional Water Cycle and Heavy Spring Rainfall in Iowa: Observational and Modeling Analyses from the IFloodS Campaign

Loading next page...
 
/lp/ams/the-regional-water-cycle-and-heavy-spring-rainfall-in-iowa-w07RtvSs6q
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-15-0174.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Nov 11, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off