The Predictors and Forecast Skill of Northern Hemisphere Teleconnection Patterns for Lead Times of 3–4 Weeks

The Predictors and Forecast Skill of Northern Hemisphere Teleconnection Patterns for Lead Times... AbstractThe Pacific–North American pattern (PNA), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) are three dominant teleconnection patterns known to strongly affect December–February surface weather in the Northern Hemisphere. A partial least squares regression (PLSR) method is adopted in this study to generate wintertime two-week statistical forecasts of these three teleconnection pattern indices for lead times of up to five weeks over the 1980–2013 period. The PLSR approach generates forecasts for the teleconnection pattern indices by maximizing the variance explained by predictor indices determined as linear combinations of predictor fields, which include gridded outgoing longwave radiation (OLR), 300-hPa geopotential height (Z300), and 50-hPa geopotential height (Z50). Overall, the PLSR models yield statistically significant skill at all lead times up to five weeks. In particular, cross-validated correlations between the combined weeks 3–4 PLSR forecasts and verification for the PNA, NAO, and AO indices are 0.34, 0.28, and 0.41, respectively. The PLSR approach also allows the authors to isolate a small number of predictor patterns that help shed light on the sources of prediction skill for each teleconnection pattern. As expected, the results reveal the importance of tropical convection (OLR) for forecast skill in weeks 3–4, but the initial atmospheric flow (Z300) accounts for a substantial fraction of the skill as well. Overall, the results of this study provide promise for improving subseasonal-to-seasonal (S2S) forecasts and the physical understanding of predictability on these time scales. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

The Predictors and Forecast Skill of Northern Hemisphere Teleconnection Patterns for Lead Times of 3–4 Weeks

Loading next page...
 
/lp/ams/the-predictors-and-forecast-skill-of-northern-hemisphere-1jNwPlJgce
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0394.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Pacific–North American pattern (PNA), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) are three dominant teleconnection patterns known to strongly affect December–February surface weather in the Northern Hemisphere. A partial least squares regression (PLSR) method is adopted in this study to generate wintertime two-week statistical forecasts of these three teleconnection pattern indices for lead times of up to five weeks over the 1980–2013 period. The PLSR approach generates forecasts for the teleconnection pattern indices by maximizing the variance explained by predictor indices determined as linear combinations of predictor fields, which include gridded outgoing longwave radiation (OLR), 300-hPa geopotential height (Z300), and 50-hPa geopotential height (Z50). Overall, the PLSR models yield statistically significant skill at all lead times up to five weeks. In particular, cross-validated correlations between the combined weeks 3–4 PLSR forecasts and verification for the PNA, NAO, and AO indices are 0.34, 0.28, and 0.41, respectively. The PLSR approach also allows the authors to isolate a small number of predictor patterns that help shed light on the sources of prediction skill for each teleconnection pattern. As expected, the results reveal the importance of tropical convection (OLR) for forecast skill in weeks 3–4, but the initial atmospheric flow (Z300) accounts for a substantial fraction of the skill as well. Overall, the results of this study provide promise for improving subseasonal-to-seasonal (S2S) forecasts and the physical understanding of predictability on these time scales.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off