The Modulation of Stationary Waves, and Their Response to Climate Change, by Parameterized Orographic Drag

The Modulation of Stationary Waves, and Their Response to Climate Change, by Parameterized... AbstractThe parameterization of orographic drag processes in atmospheric models remains uncertain because of a lack of observational and theoretical constraints on their formulation and free parameters. While previous studies have demonstrated that parameterized orographic drag acting near the surface has a significant impact on the atmospheric circulation, this work follows a more systematic approach to investigate its impacts on the large-scale circulation and the circulation response to climate change. A set of experiments with a comprehensive atmospheric general circulation model is used to ascertain the range of climatological circulations that may arise from parameter uncertainty. It is found that the Northern Hemisphere (NH) wintertime stationary wave field is strongly damped over the North Pacific (NP) and amplified over the North Atlantic (NA) as a result of increased low-level parameterized orographic drag, both of which are shown to be conducive to higher-latitude westerlies. A comparison with the stationary wave field presented in other studies suggests that the too-zonal NA jet and equatorward NP jet biases that are prevalent in climate models may be at least partly due to their representation of orographic drag. The amplitude of the stationary wave response to climate change across the experiments is shown to scale with the magnitude of low-level parameterized orographic drag through its influence on the present-day climatological stationary wave amplitudes over different sectors of the NH, which is consistent with linear stationary wave theory. This work highlights the importance of fidelity in a model’s basic state for regional climate change projections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

The Modulation of Stationary Waves, and Their Response to Climate Change, by Parameterized Orographic Drag

Loading next page...
 
/lp/ams/the-modulation-of-stationary-waves-and-their-response-to-climate-AvzaR7iCoz
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0085.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe parameterization of orographic drag processes in atmospheric models remains uncertain because of a lack of observational and theoretical constraints on their formulation and free parameters. While previous studies have demonstrated that parameterized orographic drag acting near the surface has a significant impact on the atmospheric circulation, this work follows a more systematic approach to investigate its impacts on the large-scale circulation and the circulation response to climate change. A set of experiments with a comprehensive atmospheric general circulation model is used to ascertain the range of climatological circulations that may arise from parameter uncertainty. It is found that the Northern Hemisphere (NH) wintertime stationary wave field is strongly damped over the North Pacific (NP) and amplified over the North Atlantic (NA) as a result of increased low-level parameterized orographic drag, both of which are shown to be conducive to higher-latitude westerlies. A comparison with the stationary wave field presented in other studies suggests that the too-zonal NA jet and equatorward NP jet biases that are prevalent in climate models may be at least partly due to their representation of orographic drag. The amplitude of the stationary wave response to climate change across the experiments is shown to scale with the magnitude of low-level parameterized orographic drag through its influence on the present-day climatological stationary wave amplitudes over different sectors of the NH, which is consistent with linear stationary wave theory. This work highlights the importance of fidelity in a model’s basic state for regional climate change projections.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off