The MJO as a Dispersive, Convectively Coupled Moisture Wave: Theory and Observations

The MJO as a Dispersive, Convectively Coupled Moisture Wave: Theory and Observations AbstractA linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

The MJO as a Dispersive, Convectively Coupled Moisture Wave: Theory and Observations

Loading next page...
 
/lp/ams/the-mjo-as-a-dispersive-convectively-coupled-moisture-wave-theory-and-730UchtR0o
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-15-0170.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 22, 2016

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial