The Lifecycle of Semidiurnal Internal Tides over the Northern Mid-Atlantic Ridge

The Lifecycle of Semidiurnal Internal Tides over the Northern Mid-Atlantic Ridge AbstractThe life cycle of semidiurnal internal tides over the Mid-Atlantic Ridge (MAR) sector south of the Azores is investigated using in situ, a high-resolution mooring and microstructure profiler, and satellite data, in combination with a theoretical model of barotropic-to-baroclinic tidal energy conversion. The mooring analysis reveals that the internal tide horizontal energy flux is dominated by mode 1 and that energy density is more distributed among modes 1–10. Most modes are compatible with an interpretation in terms of standing internal tides, suggesting that they result from interactions between waves generated over the MAR. Internal tide energy is thus concentrated above the ridge and is eventually available for local diapycnal mixing, as endorsed by the elevated rates of turbulent energy dissipation ε estimated from microstructure measurements. A spring–neap modulation of energy density on the MAR is found to originate from the remote generation and radiation of strong mode-1 internal tides from the Atlantis-Meteor Seamount Complex. Similar fortnightly variability of a factor of 2 is observed in ε, but this signal’s origin cannot be determined unambiguously. A regional tidal energy budget highlights the significance of high-mode generation, with 81% of the energy lost by the barotropic tide being converted into modes >1 and only 9% into mode 1. This has important implications for the fraction (q) of local dissipation to the total energy conversion, which is regionally estimated to be ~0.5. This result is in stark contrast with the Hawaiian Ridge system, where the radiation of mode-1 internal tides accounts for 30% of the regional energy conversion, and q < 0.25. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

The Lifecycle of Semidiurnal Internal Tides over the Northern Mid-Atlantic Ridge

Loading next page...
 
/lp/ams/the-lifecycle-of-semidiurnal-internal-tides-over-the-northern-mid-oQcEq0iI0A
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-17-0121.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe life cycle of semidiurnal internal tides over the Mid-Atlantic Ridge (MAR) sector south of the Azores is investigated using in situ, a high-resolution mooring and microstructure profiler, and satellite data, in combination with a theoretical model of barotropic-to-baroclinic tidal energy conversion. The mooring analysis reveals that the internal tide horizontal energy flux is dominated by mode 1 and that energy density is more distributed among modes 1–10. Most modes are compatible with an interpretation in terms of standing internal tides, suggesting that they result from interactions between waves generated over the MAR. Internal tide energy is thus concentrated above the ridge and is eventually available for local diapycnal mixing, as endorsed by the elevated rates of turbulent energy dissipation ε estimated from microstructure measurements. A spring–neap modulation of energy density on the MAR is found to originate from the remote generation and radiation of strong mode-1 internal tides from the Atlantis-Meteor Seamount Complex. Similar fortnightly variability of a factor of 2 is observed in ε, but this signal’s origin cannot be determined unambiguously. A regional tidal energy budget highlights the significance of high-mode generation, with 81% of the energy lost by the barotropic tide being converted into modes >1 and only 9% into mode 1. This has important implications for the fraction (q) of local dissipation to the total energy conversion, which is regionally estimated to be ~0.5. This result is in stark contrast with the Hawaiian Ridge system, where the radiation of mode-1 internal tides accounts for 30% of the regional energy conversion, and q < 0.25.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Jan 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial