The Large Scale Dynamical Response of Clouds to Aerosol Forcing

The Large Scale Dynamical Response of Clouds to Aerosol Forcing AbstractWe use radiative kernels to quantify the instantaneous radiative forcing of aerosols and the aerosol-mediated cloud response in coupled ocean-atmosphere model simulations under both historical and future emission scenarios. The method is evaluated using matching pairs of historical climate change experiments with and without aerosol forcing and accurately captures the spatial pattern and global mean effects of aerosol forcing. We show that aerosol-driven changes in the atmospheric circulation induce additional cloud changes. Thus, the total aerosol-mediated cloud response consists of both local microphysical changes and non-local dynamical changes that are driven by hemispheric asymmetries in aerosol forcing. By comparing coupled and fixed-SST (sea surface temperature) simulations with identical aerosol forcing we isolate the relative contributions of these two components, exploiting the ability of prescribed SSTs to also suppress changes in the atmospheric circulation. The radiative impact of the dynamical cloud changes are found to be comparable in magnitude to that of the microphysical cloud changes, and act to further amplify the inter-hemispheric asymmetry of the aerosol radiative forcing. The dynamical cloud response is closely linked to the meridional displacement of the Hadley Cell that, in turn, is driven by changes in the cross-equatorial energy transport. In this way, the dynamical cloud changes act as a positive feedback on the meridional displacement of the Hadley Cell, roughly doubling the projected changes in cross-equatorial energy transport compared to that from the microphysical changes alone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Large Scale Dynamical Response of Clouds to Aerosol Forcing

Journal of Climate , Volume preprint (2017): 1 – Aug 1, 2017

Loading next page...
 
/lp/ams/the-large-scale-dynamical-response-of-clouds-to-aerosol-forcing-5aUeXEqks0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0050.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWe use radiative kernels to quantify the instantaneous radiative forcing of aerosols and the aerosol-mediated cloud response in coupled ocean-atmosphere model simulations under both historical and future emission scenarios. The method is evaluated using matching pairs of historical climate change experiments with and without aerosol forcing and accurately captures the spatial pattern and global mean effects of aerosol forcing. We show that aerosol-driven changes in the atmospheric circulation induce additional cloud changes. Thus, the total aerosol-mediated cloud response consists of both local microphysical changes and non-local dynamical changes that are driven by hemispheric asymmetries in aerosol forcing. By comparing coupled and fixed-SST (sea surface temperature) simulations with identical aerosol forcing we isolate the relative contributions of these two components, exploiting the ability of prescribed SSTs to also suppress changes in the atmospheric circulation. The radiative impact of the dynamical cloud changes are found to be comparable in magnitude to that of the microphysical cloud changes, and act to further amplify the inter-hemispheric asymmetry of the aerosol radiative forcing. The dynamical cloud response is closely linked to the meridional displacement of the Hadley Cell that, in turn, is driven by changes in the cross-equatorial energy transport. In this way, the dynamical cloud changes act as a positive feedback on the meridional displacement of the Hadley Cell, roughly doubling the projected changes in cross-equatorial energy transport compared to that from the microphysical changes alone.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off