The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification

The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification As part of the evolution and future enhancement of the Next Generation Weather Radars (NEXRAD), the National Severe Storms Laboratory recently upgraded the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) to include a polarimetric capability. The proof of concept was tested in central Oklahoma during a 1-yr demonstration project referred to as the Joint Polarization Experiment (JPOLE). This paper presents an overview of polarimetric algorithms for rainfall estimation and hydrometeor classification and their performance during JPOLE. The quality of rainfall measurements is validated on a large dataset from the Oklahoma Mesonet and Agricultural Research Service Micronet rain gauge networks. The comparison demonstrates that polarimetric rainfall estimates are often dramatically superior to those provided by conventional rainfall algorithms. Using a synthetic R(Z, KDP, ZDR) polarimetric rainfall relation, rms errors are reduced by a factor of 1.7 for point measurements and 3.7 for areal estimates when compared to results from a conventional R(Z) relation. Radar data quality improvement, hail identification, rain/snow discrimination, and polarimetric tornado detection are also illustrated for selected events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The Joint Polarization Experiment: Polarimetric Rainfall Measurements and Hydrometeor Classification

Loading next page...
 
/lp/ams/the-joint-polarization-experiment-polarimetric-rainfall-measurements-DCWKyAfoT0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-86-6-809
Publisher site
See Article on Publisher Site

Abstract

As part of the evolution and future enhancement of the Next Generation Weather Radars (NEXRAD), the National Severe Storms Laboratory recently upgraded the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) to include a polarimetric capability. The proof of concept was tested in central Oklahoma during a 1-yr demonstration project referred to as the Joint Polarization Experiment (JPOLE). This paper presents an overview of polarimetric algorithms for rainfall estimation and hydrometeor classification and their performance during JPOLE. The quality of rainfall measurements is validated on a large dataset from the Oklahoma Mesonet and Agricultural Research Service Micronet rain gauge networks. The comparison demonstrates that polarimetric rainfall estimates are often dramatically superior to those provided by conventional rainfall algorithms. Using a synthetic R(Z, KDP, ZDR) polarimetric rainfall relation, rms errors are reduced by a factor of 1.7 for point measurements and 3.7 for areal estimates when compared to results from a conventional R(Z) relation. Radar data quality improvement, hail identification, rain/snow discrimination, and polarimetric tornado detection are also illustrated for selected events.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 30, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial