The Interpretation of Short Climate Records, with Comments on the North Atlantic and Southern Oscillations

The Interpretation of Short Climate Records, with Comments on the North Atlantic and Southern... This pedagogical note reminds the reader that the interpretation of climate records is dependent upon understanding the behavior of stochastic processes. In particular, before concluding that one is seeing evidence for trends, shifts in the mean, or changes in oscillation periods, one must rule out the purely random fluctuations expected from stationary time series. The example of the North Atlantic oscillation (NAO) is mainly used here: the spectral density is nearly white (frequency power law s0.2) with slight broadband features near 8 and 2.5 yr. By generating synthetic but stationary time series, one can see exhibited many of the features sometimes exciting attention as being of causal climate significance. Such a display does not disprove the hypothesis of climate change, but it provides a simple null hypothesis for what is seen. In addition, it is shown that the linear predictive skill for the NAO index must be very slight (less than 3 of the variance). A brief comparison with the Southern Oscillation shows a different spectral distribution, but again a simulation has long periods of apparent systematic sign and trends. Application of threshold-crossing statistics (Ricean) shows no contradiction to the assumption that the Darwin pressure record is statistically stationary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The Interpretation of Short Climate Records, with Comments on the North Atlantic and Southern Oscillations

Loading next page...
 
/lp/ams/the-interpretation-of-short-climate-records-with-comments-on-the-north-O5hsUjt7zj
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

This pedagogical note reminds the reader that the interpretation of climate records is dependent upon understanding the behavior of stochastic processes. In particular, before concluding that one is seeing evidence for trends, shifts in the mean, or changes in oscillation periods, one must rule out the purely random fluctuations expected from stationary time series. The example of the North Atlantic oscillation (NAO) is mainly used here: the spectral density is nearly white (frequency power law s0.2) with slight broadband features near 8 and 2.5 yr. By generating synthetic but stationary time series, one can see exhibited many of the features sometimes exciting attention as being of causal climate significance. Such a display does not disprove the hypothesis of climate change, but it provides a simple null hypothesis for what is seen. In addition, it is shown that the linear predictive skill for the NAO index must be very slight (less than 3 of the variance). A brief comparison with the Southern Oscillation shows a different spectral distribution, but again a simulation has long periods of apparent systematic sign and trends. Application of threshold-crossing statistics (Ricean) shows no contradiction to the assumption that the Darwin pressure record is statistically stationary.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Feb 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off