The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections

The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections AbstractThis paper summarizes advances in research on tropical–polar teleconnections, made roughly over the last decade. Elucidating El Niño–Southern Oscillation (ENSO) impacts on high latitudes has remained an important focus along different lines of inquiry. Tropical to polar connections have also been discovered at the intraseasonal time scale, associated with Madden–Julian oscillations (MJOs). On the time scale of decades, changes in MJO phases can result in temperature and sea ice changes in the polar regions of both hemispheres. Moreover, the long-term changes in SST of the western tropical Pacific, tropical Atlantic, and North Atlantic Ocean have been linked to the rapid winter warming around the Antarctic Peninsula, while SST changes in the central tropical Pacific have been linked to the warming in West Antarctica. Rossby wave trains emanating from the tropics remain the key mechanism for tropical and polar teleconnections from intraseasonal to decadal time scales. ENSO-related tropical SST anomalies affect higher-latitude annular modes by modulating mean zonal winds in both the subtropics and midlatitudes. Recent studies have also revealed the details of the interactions between the Rossby wave and atmospheric circulations in high latitudes. We also review some of the hypothesized connections between the tropics and poles in the past, including times when the climate was fundamentally different from present day especially given a larger-than-present-day global cryosphere. In addition to atmospheric Rossby waves forced from the tropics, large polar temperature changes and amplification, in part associated with variability in orbital configuration and solar irradiance, affected the low–high-latitude connections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Interconnected Global Climate System—A Review of Tropical–Polar Teleconnections

Loading next page...
 
/lp/ams/the-interconnected-global-climate-system-a-review-of-tropical-polar-jbQn7ch0M3
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0637.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper summarizes advances in research on tropical–polar teleconnections, made roughly over the last decade. Elucidating El Niño–Southern Oscillation (ENSO) impacts on high latitudes has remained an important focus along different lines of inquiry. Tropical to polar connections have also been discovered at the intraseasonal time scale, associated with Madden–Julian oscillations (MJOs). On the time scale of decades, changes in MJO phases can result in temperature and sea ice changes in the polar regions of both hemispheres. Moreover, the long-term changes in SST of the western tropical Pacific, tropical Atlantic, and North Atlantic Ocean have been linked to the rapid winter warming around the Antarctic Peninsula, while SST changes in the central tropical Pacific have been linked to the warming in West Antarctica. Rossby wave trains emanating from the tropics remain the key mechanism for tropical and polar teleconnections from intraseasonal to decadal time scales. ENSO-related tropical SST anomalies affect higher-latitude annular modes by modulating mean zonal winds in both the subtropics and midlatitudes. Recent studies have also revealed the details of the interactions between the Rossby wave and atmospheric circulations in high latitudes. We also review some of the hypothesized connections between the tropics and poles in the past, including times when the climate was fundamentally different from present day especially given a larger-than-present-day global cryosphere. In addition to atmospheric Rossby waves forced from the tropics, large polar temperature changes and amplification, in part associated with variability in orbital configuration and solar irradiance, affected the low–high-latitude connections.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off