The Inner-Core Temperature Structure of Hurricane Edouard (2014): Observations and Ensemble Variability

The Inner-Core Temperature Structure of Hurricane Edouard (2014): Observations and Ensemble... AbstractThe inner-core thermodynamic structure of Hurricane Edouard (2014) is explored, primarily through an examination of both high-altitude dropsondes deployed during NASA’s Hurricane and Severe Storm Sentinel (HS3) and a 60-member convection-permitting ensemble initialized with an ensemble Kalman filter. The 7-day forecasts are initialized coincident with Edouard’s tropical depression designation and include Edouard’s significant intensification to a major hurricane. Ten-member ensemble groups are created based on timing of near–rapid intensification (RI) onset, and the associated composite inner-core temperature structures are analyzed. It is found that at Edouard’s peak intensity, in both the observations and the simulations, the maximum inner-core perturbation temperature (~10–12 K) occurs in the midlevels (~4–8 km). In addition, in all composite groups that significantly intensify, the evolution of the area-averaged inner-core perturbation temperatures indicate that weak to moderate warming (at most 4 K) begins to occur in the low to midlevels (~2–6 km) ~24–48 h prior to RI, and this warming significantly strengthens and deepens (up to ~8 km) ~24 h after RI has begun. Despite broad similarities in the evolution of Edouard’s warm core in these composites, variability in the height and strength of the maximum perturbation temperature and in the overall development of the inner-core temperature structure are present among the members of the composite groups (despite similar intensity time series). This result and concomitant correlation analyses suggest that the strength and height of the maximum perturbation temperature is not a significant causal factor for RI onset in this ensemble. Fluctuations in inner-core temperature structure occur either in tandem with or after significant intensity changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

The Inner-Core Temperature Structure of Hurricane Edouard (2014): Observations and Ensemble Variability

Loading next page...
1
 
/lp/ams/the-inner-core-temperature-structure-of-hurricane-edouard-2014-mrUBYq9w34
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0095.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe inner-core thermodynamic structure of Hurricane Edouard (2014) is explored, primarily through an examination of both high-altitude dropsondes deployed during NASA’s Hurricane and Severe Storm Sentinel (HS3) and a 60-member convection-permitting ensemble initialized with an ensemble Kalman filter. The 7-day forecasts are initialized coincident with Edouard’s tropical depression designation and include Edouard’s significant intensification to a major hurricane. Ten-member ensemble groups are created based on timing of near–rapid intensification (RI) onset, and the associated composite inner-core temperature structures are analyzed. It is found that at Edouard’s peak intensity, in both the observations and the simulations, the maximum inner-core perturbation temperature (~10–12 K) occurs in the midlevels (~4–8 km). In addition, in all composite groups that significantly intensify, the evolution of the area-averaged inner-core perturbation temperatures indicate that weak to moderate warming (at most 4 K) begins to occur in the low to midlevels (~2–6 km) ~24–48 h prior to RI, and this warming significantly strengthens and deepens (up to ~8 km) ~24 h after RI has begun. Despite broad similarities in the evolution of Edouard’s warm core in these composites, variability in the height and strength of the maximum perturbation temperature and in the overall development of the inner-core temperature structure are present among the members of the composite groups (despite similar intensity time series). This result and concomitant correlation analyses suggest that the strength and height of the maximum perturbation temperature is not a significant causal factor for RI onset in this ensemble. Fluctuations in inner-core temperature structure occur either in tandem with or after significant intensity changes.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jan 11, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off