The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation

The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation AbstractPrevious studies have explored the influence of atmospheric cloud radiative effects (ACRE) on the tropospheric circulation. Here the authors explore the influence of ACRE on the stratospheric circulation. The response of the stratospheric circulation to ACRE is assessed by comparing simulations run with and without ACRE. The stratospheric circulation response to ACRE is reproducible in a range of different GCMs and can be interpreted in the context of both a dynamically driven and a radiatively driven component.The dynamic component is linked to ACRE-induced changes in the vertical and meridional fluxes of wave activity. The ACRE-induced changes in the vertical flux of wave activity into the stratosphere are consistent with the ACRE-induced changes in tropospheric baroclinicity and thus the amplitude of midlatitude baroclinic eddies. They account for a strengthening of the Brewer–Dobson circulation, a cooling of the tropical lower stratosphere, a weakening and warming of the polar vortex, a reduction of static stability near the tropical tropopause transition layer, and a shortening of the time scale of extratropical stratospheric variability. The ACRE-induced changes in the equatorward flux of wave activity in the low-latitude stratosphere account for a strengthening of the zonal wind in the subtropical lower to midstratosphere.The radiative component is linked to ACRE-induced changes in the flux of longwave radiation into the lower stratosphere. The changes in radiative fluxes lead to a cooling of the extratropical lower stratosphere, changes in the static stability and cloud fraction near the extratropical tropopause, and a shortening of the time scales of extratropical stratospheric variability.The results highlight a previously overlooked pathway through which tropospheric climate influences the stratosphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Influence of Atmospheric Cloud Radiative Effects on the Large-Scale Stratospheric Circulation

Loading next page...
 
/lp/ams/the-influence-of-atmospheric-cloud-radiative-effects-on-the-large-rUD91gAQWU
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0643.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrevious studies have explored the influence of atmospheric cloud radiative effects (ACRE) on the tropospheric circulation. Here the authors explore the influence of ACRE on the stratospheric circulation. The response of the stratospheric circulation to ACRE is assessed by comparing simulations run with and without ACRE. The stratospheric circulation response to ACRE is reproducible in a range of different GCMs and can be interpreted in the context of both a dynamically driven and a radiatively driven component.The dynamic component is linked to ACRE-induced changes in the vertical and meridional fluxes of wave activity. The ACRE-induced changes in the vertical flux of wave activity into the stratosphere are consistent with the ACRE-induced changes in tropospheric baroclinicity and thus the amplitude of midlatitude baroclinic eddies. They account for a strengthening of the Brewer–Dobson circulation, a cooling of the tropical lower stratosphere, a weakening and warming of the polar vortex, a reduction of static stability near the tropical tropopause transition layer, and a shortening of the time scale of extratropical stratospheric variability. The ACRE-induced changes in the equatorward flux of wave activity in the low-latitude stratosphere account for a strengthening of the zonal wind in the subtropical lower to midstratosphere.The radiative component is linked to ACRE-induced changes in the flux of longwave radiation into the lower stratosphere. The changes in radiative fluxes lead to a cooling of the extratropical lower stratosphere, changes in the static stability and cloud fraction near the extratropical tropopause, and a shortening of the time scales of extratropical stratospheric variability.The results highlight a previously overlooked pathway through which tropospheric climate influences the stratosphere.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off