The Impact of NASA Global Hawk Unmanned Aircraft Dropwindsonde Observations on Tropical Cyclone Track, Intensity, and Structure: Case Studies

The Impact of NASA Global Hawk Unmanned Aircraft Dropwindsonde Observations on Tropical Cyclone... AbstractThe impact of Global Hawk (GH) dropwindsondes on tropical cyclone analyses and forecasts is evaluated in an ensemble-based vortex-scale data assimilation system. Two cases from Hurricane Edouard (2014) are presented. In the first case, inner-core observations were exclusively provided by GH dropwindsondes, while in the second case, GH dropwindsondes were concentrated in the storm’s near environment and were complemented by an extensive number of inner-core observations from other aircraft. It is found that when GH dropwindsondes are assimilated, a positive impact on the minimum sea level pressure (MSLP) forecast persists for most lead times in the first case, conceivably due to the better representation of the initial vortex structure, such as the warm-core anomaly and primary and secondary circulations. The verification of the storm’s kinematic and thermodynamic structure in the forecasts of the first case is carried out relative to the time of the appearance of a secondary wind maximum (SWM) using the tail Doppler radar and dropwindsonde composite analyses. A closer-to-observed wavenumber-0 wind field in the experiment with GH dropwindsondes is seen before the SWM is developed, which likely contributes to the superior intensity forecast up to 36 h. The improvement in the warm-core anomaly in the forecasts from the experiment with GH dropwindsondes is believed to have also contributed to the consistent improvement in the MSLP forecast. For the latter case, a persistent improvement in the track forecast is seen, which is consistent with a better representation of the near-environmental flow obtained from GH data in the same region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

The Impact of NASA Global Hawk Unmanned Aircraft Dropwindsonde Observations on Tropical Cyclone Track, Intensity, and Structure: Case Studies

Loading next page...
 
/lp/ams/the-impact-of-nasa-global-hawk-unmanned-aircraft-dropwindsonde-r0Ypdv68Fo
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0332.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe impact of Global Hawk (GH) dropwindsondes on tropical cyclone analyses and forecasts is evaluated in an ensemble-based vortex-scale data assimilation system. Two cases from Hurricane Edouard (2014) are presented. In the first case, inner-core observations were exclusively provided by GH dropwindsondes, while in the second case, GH dropwindsondes were concentrated in the storm’s near environment and were complemented by an extensive number of inner-core observations from other aircraft. It is found that when GH dropwindsondes are assimilated, a positive impact on the minimum sea level pressure (MSLP) forecast persists for most lead times in the first case, conceivably due to the better representation of the initial vortex structure, such as the warm-core anomaly and primary and secondary circulations. The verification of the storm’s kinematic and thermodynamic structure in the forecasts of the first case is carried out relative to the time of the appearance of a secondary wind maximum (SWM) using the tail Doppler radar and dropwindsonde composite analyses. A closer-to-observed wavenumber-0 wind field in the experiment with GH dropwindsondes is seen before the SWM is developed, which likely contributes to the superior intensity forecast up to 36 h. The improvement in the warm-core anomaly in the forecasts from the experiment with GH dropwindsondes is believed to have also contributed to the consistent improvement in the MSLP forecast. For the latter case, a persistent improvement in the track forecast is seen, which is consistent with a better representation of the near-environmental flow obtained from GH data in the same region.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: May 26, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial