The Impact of Moist Frontogenesis and Tropopause Undulation on the Intensity, Size, and Structural Changes of Hurricane Sandy (2012)

The Impact of Moist Frontogenesis and Tropopause Undulation on the Intensity, Size, and... AbstractThis study examines the relative roles of moist frontogenesis and tropopause undulation in determining the intensity, size, and structural changes of Hurricane Sandy using a high-resolution cloud-resolving model. A 138-h simulation reproduces Sandy’s four distinct development stages: (i) rapid intensification, (ii) weakening, (iii) steady maximum surface wind but with large continued sea level pressure (SLP) falls, and (iv) reintensification. Results show typical correlations between intensity changes, sea surface temperature, and vertical wind shear during the first two stages. The large SLP falls during the last two stages are mostly caused by Sandy’s northward movement into lower-tropopause regions associated with an eastward-propagating midlatitude trough, where the associated lower-stratospheric warm air wraps into the storm and its surrounding areas. The steady maximum surface wind occurs because of the widespread SLP falls with weak gradients lacking significant inward advection of absolute angular momentum (AAM). Meanwhile, three spiral frontogenetic zones and associated rainbands develop internally in the outer northeastern quadrant during the last three stages when Sandy’s southeasterly warm current converges with an easterly cold current associated with an eastern Canadian high. Cyclonic inward advection of AAM along each frontal rainband accounts for the continued expansion of the tropical storm–force wind and structural changes, while deep convection in the eyewall and merging of the final two surviving frontogenetic zones generate a spiraling jet in Sandy’s northwestern quadrant, leading to its reintensification prior to landfall. The authors conclude that a series of moist frontogenesis plays a more important role than the lower-stratospheric warmth in determining Sandy’s size, intensity, and structural changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

The Impact of Moist Frontogenesis and Tropopause Undulation on the Intensity, Size, and Structural Changes of Hurricane Sandy (2012)

Loading next page...
 
/lp/ams/the-impact-of-moist-frontogenesis-and-tropopause-undulation-on-the-d8Pi89RwWY
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-15-0362.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study examines the relative roles of moist frontogenesis and tropopause undulation in determining the intensity, size, and structural changes of Hurricane Sandy using a high-resolution cloud-resolving model. A 138-h simulation reproduces Sandy’s four distinct development stages: (i) rapid intensification, (ii) weakening, (iii) steady maximum surface wind but with large continued sea level pressure (SLP) falls, and (iv) reintensification. Results show typical correlations between intensity changes, sea surface temperature, and vertical wind shear during the first two stages. The large SLP falls during the last two stages are mostly caused by Sandy’s northward movement into lower-tropopause regions associated with an eastward-propagating midlatitude trough, where the associated lower-stratospheric warm air wraps into the storm and its surrounding areas. The steady maximum surface wind occurs because of the widespread SLP falls with weak gradients lacking significant inward advection of absolute angular momentum (AAM). Meanwhile, three spiral frontogenetic zones and associated rainbands develop internally in the outer northeastern quadrant during the last three stages when Sandy’s southeasterly warm current converges with an easterly cold current associated with an eastern Canadian high. Cyclonic inward advection of AAM along each frontal rainband accounts for the continued expansion of the tropical storm–force wind and structural changes, while deep convection in the eyewall and merging of the final two surviving frontogenetic zones generate a spiraling jet in Sandy’s northwestern quadrant, leading to its reintensification prior to landfall. The authors conclude that a series of moist frontogenesis plays a more important role than the lower-stratospheric warmth in determining Sandy’s size, intensity, and structural changes.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off