The Impact of Layer Perturbation Potential Energy on the East Asian Summer Monsoon

The Impact of Layer Perturbation Potential Energy on the East Asian Summer Monsoon AbstractThis paper analyzes the relationship between the 1000–850-hPa layer perturbation potential energy (LPPE) as the difference in local potential energy between the actual state and the reference state and the East Asian summer monsoon (EASM) using reanalysis and observational datasets. The EASM is closely related to the first-order moment term of LPPE (LPPE1) from the preceding March to the boreal summer over three key regions: the eastern Indian Ocean, the subtropical central Pacific, and midlatitude East Asia. The LPPE1 pattern (−, +, +), with negative values over the eastern Indian Ocean, positive values over the subtropical central Pacific, and positive values over East Asia, corresponds to negative LPPE1 anomalies over the south of the EASM region but positive LPPE1 anomalies over the north of the EASM region, which lead to an anomalous downward branch over the southern region but an upward branch over the northern region. The anomalous vertical motion affects the local meridional circulation over East Asia that leads to a southwesterly wind anomaly over East Asia (south of 30°N) at 850 hPa and anomalous downward motion over 100°–120°E (along 25°–35°N), resulting in a stronger EASM, more kinetic energy over the EASM region, and less boreal summer rainfall in the middle and lower reaches of the Yangtze River valley (24°–36°N, 90°–125°E). These LPPE1 anomalies in the eastern Indian Ocean and subtropical central Pacific appear to be connected to changes in local sea surface temperature through the release of latent heat. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Impact of Layer Perturbation Potential Energy on the East Asian Summer Monsoon

Loading next page...
 
/lp/ams/the-impact-of-layer-perturbation-potential-energy-on-the-east-asian-r0zOLMhokR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0729.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper analyzes the relationship between the 1000–850-hPa layer perturbation potential energy (LPPE) as the difference in local potential energy between the actual state and the reference state and the East Asian summer monsoon (EASM) using reanalysis and observational datasets. The EASM is closely related to the first-order moment term of LPPE (LPPE1) from the preceding March to the boreal summer over three key regions: the eastern Indian Ocean, the subtropical central Pacific, and midlatitude East Asia. The LPPE1 pattern (−, +, +), with negative values over the eastern Indian Ocean, positive values over the subtropical central Pacific, and positive values over East Asia, corresponds to negative LPPE1 anomalies over the south of the EASM region but positive LPPE1 anomalies over the north of the EASM region, which lead to an anomalous downward branch over the southern region but an upward branch over the northern region. The anomalous vertical motion affects the local meridional circulation over East Asia that leads to a southwesterly wind anomaly over East Asia (south of 30°N) at 850 hPa and anomalous downward motion over 100°–120°E (along 25°–35°N), resulting in a stronger EASM, more kinetic energy over the EASM region, and less boreal summer rainfall in the middle and lower reaches of the Yangtze River valley (24°–36°N, 90°–125°E). These LPPE1 anomalies in the eastern Indian Ocean and subtropical central Pacific appear to be connected to changes in local sea surface temperature through the release of latent heat.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Sep 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off