The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa

The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian... AbstractSouthern Africa precipitation during December–March (DJFM), the height of the rainy season, is closely related with two modes of climate variability, El Niño–Southern Oscillation (ENSO) and the subtropical Indian Ocean dipole (SIOD). Recent research has found that the combined effects of ENSO and SIOD phasing are linked with changes to the regional southern Africa atmospheric circulation beyond the individual effects of either ENSO or SIOD alone. Here, the authors extend the recent research and examine the southern Africa land surface hydrology associated with the synchronous effects of ENSO and SIOD events using a macroscale hydrologic model, with particular emphasis on the evolution of the hydrologic conditions over three critical Transfrontier Conservation Areas: the Kavango–Zambezi Conservation Area, the Greater Limpopo Transfrontier Park, and the Kgalagadi Transfrontier Park. A better understanding of the climatic effects of ENSO and SIOD phase combinations is important for regional-scale transboundary conservation planning, especially for southern Africa, where both humans and wildlife are dependent on the timing and amount of precipitation. Opposing ENSO and SIOD phase combinations (e.g., El Niño and a negative SIOD or La Niña and a positive SIOD) result in strong southern Africa climate impacts during DJFM. The strong instantaneous regional precipitation and near-surface air temperature anomalies during opposing ENSO and SIOD phase combinations lead to significant soil moisture and evapotranspiration anomalies in the year following the ENSO event. By contrast, when ENSO and SIOD are in the same phase (e.g., El Niño and a positive SIOD or La Niña and a negative SIOD), the southern Africa climate impacts during DJFM are minimal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa

Loading next page...
 
/lp/ams/the-hydrologic-effects-of-synchronous-el-ni-o-southern-oscillation-and-Em0erkKpSs
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0294.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSouthern Africa precipitation during December–March (DJFM), the height of the rainy season, is closely related with two modes of climate variability, El Niño–Southern Oscillation (ENSO) and the subtropical Indian Ocean dipole (SIOD). Recent research has found that the combined effects of ENSO and SIOD phasing are linked with changes to the regional southern Africa atmospheric circulation beyond the individual effects of either ENSO or SIOD alone. Here, the authors extend the recent research and examine the southern Africa land surface hydrology associated with the synchronous effects of ENSO and SIOD events using a macroscale hydrologic model, with particular emphasis on the evolution of the hydrologic conditions over three critical Transfrontier Conservation Areas: the Kavango–Zambezi Conservation Area, the Greater Limpopo Transfrontier Park, and the Kgalagadi Transfrontier Park. A better understanding of the climatic effects of ENSO and SIOD phase combinations is important for regional-scale transboundary conservation planning, especially for southern Africa, where both humans and wildlife are dependent on the timing and amount of precipitation. Opposing ENSO and SIOD phase combinations (e.g., El Niño and a negative SIOD or La Niña and a positive SIOD) result in strong southern Africa climate impacts during DJFM. The strong instantaneous regional precipitation and near-surface air temperature anomalies during opposing ENSO and SIOD phase combinations lead to significant soil moisture and evapotranspiration anomalies in the year following the ENSO event. By contrast, when ENSO and SIOD are in the same phase (e.g., El Niño and a positive SIOD or La Niña and a negative SIOD), the southern Africa climate impacts during DJFM are minimal.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Sep 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off