The Evolution of Convective Storms from Their Footprints on the Sea as Viewed by Synthetic Aperture Radar from Space

The Evolution of Convective Storms from Their Footprints on the Sea as Viewed by Synthetic... SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective storms; rain damps the surface waves and causes echo-free holes, while the diverging winds associated with the downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a minisquall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radarthe only source of corroborative data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The Evolution of Convective Storms from Their Footprints on the Sea as Viewed by Synthetic Aperture Radar from Space

Loading next page...
 
/lp/ams/the-evolution-of-convective-storms-from-their-footprints-on-the-sea-as-0IR0yYb0oX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1994)075<1183:TEOCSF>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

SEASAT synthetic aperture radar (SAR) echoes from the sea have previously been shown to be the result of rain and winds produced by convective storms; rain damps the surface waves and causes echo-free holes, while the diverging winds associated with the downdraft generate waves and associated echoes surrounding the holes. Gust fronts are also evident. Such a snapshot from 8 July 1978 has been examined in conjunction with ground-based radar. This leads to the conclusion that the SAR storm footprints resulted from storm processes that occurred up to an hour or more prior to the snapshot. A sequence of events is discerned from the SAR imagery in which new cell growth is triggered in between the converging outflows of two preexisting cells. In turn, the new cell generates a minisquall line along its expanding gust front. While such phenomena are well known over land, the spaceborne SAR now allows important inferences to be made about the nature and frequency of convective storms over the oceans. The storm effects on the sea have significant implications for spaceborne wind scatterometry and rainfall measurements. Some of the findings herein remain speculative because of the great distance to the Miami weather radarthe only source of corroborative data.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jul 7, 1994

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off