The Effect of Boreal Late Autumn Snow Cover over Western and Central China on the Northern Hemisphere Wintertime Blocking Frequency

The Effect of Boreal Late Autumn Snow Cover over Western and Central China on the Northern... AbstractThe impact of snow cover in western and central China during late autumn on wintertime blocking occurrence is investigated using reanalysis data. The study results show that wintertime atmospheric circulations affected by late autumn snow cover anomalies form favorable conditions for increased blocking frequency (BF), especially in the North Pacific and North Atlantic. Evidence is also presented that the stratosphere–troposphere interactions are the key mechanism of the lag response of wintertime North Pacific and North Atlantic BFs to the late autumn snow cover. That is, positive anomalous snow cover can induce a dipole anomaly in the geopotential height field over the lower stratosphere, due to the decrease of the 300–1000-hPa thickness and the concurrent variation between the East Asian plateau jet and the polar front jet. The associated positive geopotential height anomalies are located over northwestern Eurasia. Meanwhile, western and central China shows remarkably negative geopotential height anomalies. Also, the corresponding atmospheric circulation in the lower stratosphere increases the Eliassen–Palm flux that propagates into the stratosphere through the constructive interference between the forced and climatological waves. The upward wave activity fluxes collapse the polar vortex in the stratosphere, resulting in the downward propagation of the geopotential and wind anomalies from the stratosphere. Consequently, the decreased zonal wind speed in the upper layer of the blocking region forms conditions favorable for wintertime blocking. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Effect of Boreal Late Autumn Snow Cover over Western and Central China on the Northern Hemisphere Wintertime Blocking Frequency

Loading next page...
 
/lp/ams/the-effect-of-boreal-late-autumn-snow-cover-over-western-and-central-kELdJ0zGl2
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0830.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe impact of snow cover in western and central China during late autumn on wintertime blocking occurrence is investigated using reanalysis data. The study results show that wintertime atmospheric circulations affected by late autumn snow cover anomalies form favorable conditions for increased blocking frequency (BF), especially in the North Pacific and North Atlantic. Evidence is also presented that the stratosphere–troposphere interactions are the key mechanism of the lag response of wintertime North Pacific and North Atlantic BFs to the late autumn snow cover. That is, positive anomalous snow cover can induce a dipole anomaly in the geopotential height field over the lower stratosphere, due to the decrease of the 300–1000-hPa thickness and the concurrent variation between the East Asian plateau jet and the polar front jet. The associated positive geopotential height anomalies are located over northwestern Eurasia. Meanwhile, western and central China shows remarkably negative geopotential height anomalies. Also, the corresponding atmospheric circulation in the lower stratosphere increases the Eliassen–Palm flux that propagates into the stratosphere through the constructive interference between the forced and climatological waves. The upward wave activity fluxes collapse the polar vortex in the stratosphere, resulting in the downward propagation of the geopotential and wind anomalies from the stratosphere. Consequently, the decreased zonal wind speed in the upper layer of the blocking region forms conditions favorable for wintertime blocking.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Nov 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off