The Changing Character of Twenty-First-Century Precipitation over the Western United States in the Variable-Resolution CESM

The Changing Character of Twenty-First-Century Precipitation over the Western United States in... AbstractThe changing characters of precipitation frequency and intensity have been comprehensively investigated from the recent historical period to the end of the twenty-first century over the western United States. Variable-resolution Community Earth System Model (VR-CESM) ensemble simulations are applied with a fine grid resolution of ~0.25° over the study area. Simulations are forced with prescribed sea surface temperatures, sea ice extent, and greenhouse gas concentrations from the representative concentration pathway 8.5 (RCP8.5) scenario. VR-CESM is shown to be effective at accurately capturing the spatial patterns of the historical precipitation climatology. The results of VR-CESM output provide significantly regional details with crucial enhancement of precipitation representations over complex terrain. In the Intermountain West and U.S. Southwest, a statistically significant increase in mean precipitation and rainy days through midcentury is observed, although this trend is tempered by the end of the century in response to a decrease in relative humidity. Over the Pacific Northwest, extreme precipitation events are observed to increase significantly as a result of increased cool season integrated vapor transport associated with a moistening of the cool seasons and drying through the warm seasons. In particular, extreme precipitation in this region appears to increase more rapidly than would be predicted by the Clausius–Clapeyron relationship. No clear climate signal emerges in mean precipitation or extreme events in the majority of California, where the precipitation climatology is attributed to large interannual variabilities that are tied closely to ENSO patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Changing Character of Twenty-First-Century Precipitation over the Western United States in the Variable-Resolution CESM

Loading next page...
 
/lp/ams/the-changing-character-of-twenty-first-century-precipitation-over-the-9qDBCKH0sZ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0673.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe changing characters of precipitation frequency and intensity have been comprehensively investigated from the recent historical period to the end of the twenty-first century over the western United States. Variable-resolution Community Earth System Model (VR-CESM) ensemble simulations are applied with a fine grid resolution of ~0.25° over the study area. Simulations are forced with prescribed sea surface temperatures, sea ice extent, and greenhouse gas concentrations from the representative concentration pathway 8.5 (RCP8.5) scenario. VR-CESM is shown to be effective at accurately capturing the spatial patterns of the historical precipitation climatology. The results of VR-CESM output provide significantly regional details with crucial enhancement of precipitation representations over complex terrain. In the Intermountain West and U.S. Southwest, a statistically significant increase in mean precipitation and rainy days through midcentury is observed, although this trend is tempered by the end of the century in response to a decrease in relative humidity. Over the Pacific Northwest, extreme precipitation events are observed to increase significantly as a result of increased cool season integrated vapor transport associated with a moistening of the cool seasons and drying through the warm seasons. In particular, extreme precipitation in this region appears to increase more rapidly than would be predicted by the Clausius–Clapeyron relationship. No clear climate signal emerges in mean precipitation or extreme events in the majority of California, where the precipitation climatology is attributed to large interannual variabilities that are tied closely to ENSO patterns.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Sep 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off