The CERES/ARM/GEWEX Experiment (CAGEX) for the Retrieval of Radiative Fluxes with Satellite Data

The CERES/ARM/GEWEX Experiment (CAGEX) for the Retrieval of Radiative Fluxes with Satellite Data Results from a temporally intensive, limited area, radiative transfer model experiment are on-line for investigating the vertical profile of shortwave and longwave radiative fluxes from the surface to the top of the atmosphere (TOA). The CERES/ARM/GEWEX Experiment (CAGEX) Version 1 provides a record of fluxes that have been computed with a radiative transfer code; the atmospheric sounding, aerosol, and satellite-retrieved cloud data on which the computations have been based; and surface-based measurements of radiative fluxes and cloud properties from ARM for comparison.The computed broadband fluxes at TOA show considerable scatter when compared with fluxes that are inferred empirically from narrowband operational satellite data. At the surface, LW fluxes computed with an alternate sounding dataset compare well with pyrgeometer measurements. In agreement with earlier work, the authors find that the calculated SW surface insolation is larger than the measurements for clear-sky and total-sky conditions.This experiment has been developed to test retrievals of radiative fluxes and the associated forcings by clouds, aerosols, surface properties, and water vapor. Collaboration is sought; the goal is to extend the domain of meteorological conditions for which such retrievals can be done accurately. CAGEX Version 1 covers April 1994. Subsequent versions will (a) at first span the same limited geographical area with data from October 1995, (b) then expand to cover a significant fraction of the GEWEX Continental-Scale International Project region for April 1996 through September 1996, and (c) eventually be used in a more advanced form to validate CERES. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The CERES/ARM/GEWEX Experiment (CAGEX) for the Retrieval of Radiative Fluxes with Satellite Data

Loading next page...
 
/lp/ams/the-ceres-arm-gewex-experiment-cagex-for-the-retrieval-of-radiative-5u3OJjfnWO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1996)077<2673:TCEFTR>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Results from a temporally intensive, limited area, radiative transfer model experiment are on-line for investigating the vertical profile of shortwave and longwave radiative fluxes from the surface to the top of the atmosphere (TOA). The CERES/ARM/GEWEX Experiment (CAGEX) Version 1 provides a record of fluxes that have been computed with a radiative transfer code; the atmospheric sounding, aerosol, and satellite-retrieved cloud data on which the computations have been based; and surface-based measurements of radiative fluxes and cloud properties from ARM for comparison.The computed broadband fluxes at TOA show considerable scatter when compared with fluxes that are inferred empirically from narrowband operational satellite data. At the surface, LW fluxes computed with an alternate sounding dataset compare well with pyrgeometer measurements. In agreement with earlier work, the authors find that the calculated SW surface insolation is larger than the measurements for clear-sky and total-sky conditions.This experiment has been developed to test retrievals of radiative fluxes and the associated forcings by clouds, aerosols, surface properties, and water vapor. Collaboration is sought; the goal is to extend the domain of meteorological conditions for which such retrievals can be done accurately. CAGEX Version 1 covers April 1994. Subsequent versions will (a) at first span the same limited geographical area with data from October 1995, (b) then expand to cover a significant fraction of the GEWEX Continental-Scale International Project region for April 1996 through September 1996, and (c) eventually be used in a more advanced form to validate CERES.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Nov 4, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial