The Boardman Regional Flux Experiment

The Boardman Regional Flux Experiment A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/the-boardman-regional-flux-experiment-zkzpA0K8XJ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1992)073<1785:TBRFE>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Nov 1, 1992

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial