The Antarctic Zone Flux Experiment

The Antarctic Zone Flux Experiment In winter the eastern Weddell Sea in the Atlantic sector of the Southern Ocean hosts some of the most dynamic airicesea interactions found on earth. Sea ice in the region is kept relatively thin by heat flux from below, maintained by upper-ocean stirring associated with the passage of intense, fast-moving cyclones. Ocean stratification is so weak that the possibility of deep convection exists, and indeed, satellite imagery from the Weddell Sea in the 1970s shows a large expanse of open water (the Weddell Polynya) that persisted through several seasons and may have significantly altered global deep-water production. Understanding what environmental conditions could again trigger widespread oceanic overturn may thus be an important key in determining the role of high latitudes in deep-ocean ventilation and global atmospheric warming. During the Antarctic Zone Flux Experiment in July and August 1994, response of the upper ocean and its ice cover to a series of storms was measured at two drifting stations supported by the National Science Foundation research icebreaker Nathaniel B. Palmer. This article describes the experiment, in which fluxes of heat, mass, and momentum were measured in the upper ocean, sea ice, and lower-atmospheric boundary layer. Initial results illustrate the importance of oceanic heat flux at the ice undersurface for determining the character of the sea ice cover. They also show how the heat flux depends both on high levels of turbulent mixing during intermittent storm events and on large variability in the stratified upper ocean below the mixed layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/the-antarctic-zone-flux-experiment-zkmLwu0uB7
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1996)077<1221:TAZFE>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

In winter the eastern Weddell Sea in the Atlantic sector of the Southern Ocean hosts some of the most dynamic airicesea interactions found on earth. Sea ice in the region is kept relatively thin by heat flux from below, maintained by upper-ocean stirring associated with the passage of intense, fast-moving cyclones. Ocean stratification is so weak that the possibility of deep convection exists, and indeed, satellite imagery from the Weddell Sea in the 1970s shows a large expanse of open water (the Weddell Polynya) that persisted through several seasons and may have significantly altered global deep-water production. Understanding what environmental conditions could again trigger widespread oceanic overturn may thus be an important key in determining the role of high latitudes in deep-ocean ventilation and global atmospheric warming. During the Antarctic Zone Flux Experiment in July and August 1994, response of the upper ocean and its ice cover to a series of storms was measured at two drifting stations supported by the National Science Foundation research icebreaker Nathaniel B. Palmer. This article describes the experiment, in which fluxes of heat, mass, and momentum were measured in the upper ocean, sea ice, and lower-atmospheric boundary layer. Initial results illustrate the importance of oceanic heat flux at the ice undersurface for determining the character of the sea ice cover. They also show how the heat flux depends both on high levels of turbulent mixing during intermittent storm events and on large variability in the stratified upper ocean below the mixed layer.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jun 11, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off