The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years

The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years AbstractThe Southern Ocean (SO) is the region of the World Ocean bordering on Antarctica over which significant exchanges between the atmosphere, the ocean, and the sea ice take place. Here, the strong and nearly unhindered eastward flow of the Antarctic Circumpolar Current plays an important role in mean global climate as it transmits climate anomalies around the hemisphere. Features of interannual variability have been observed to propagate eastward around the SO with the circumpolar flow in the form of a system of coupled anomalies, known as the Antarctic circumpolar wave (ACW). In the present study, the 142-yr series of the Twentieth Century Reanalysis, version 2, dataset (850-hPa geopotential height, sea level pressure, sea surface temperature, surface meridional wind, and surface air temperature) spanning from 1871 to 2012 is used to investigate the presence and variability of ACWs. This examination shows, for the first time, the presence of the ACW before the mid-1950s and interdecadal changes in its characteristics. Modifications in the strength and speed of the circumpolar wave are shown to be linked with large-scale climate changes. Complex empirical orthogonal function analyses confirm that the ACW becomes apparent when the tropical El Niño–Southern Oscillation (ENSO) signal gives rise to the Pacific–South American (PSA) pattern and is a consequence of the constructive combination of the PSA and the subantarctic zonal wavenumber 3. Correlation analyses are also performed to quantify the role played by ENSO teleconnections for the appearance of the ACW, and the impact on the presence of ACWs of three super–El Niño events is investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years

Loading next page...
 
/lp/ams/the-antarctic-circumpolar-wave-its-presence-and-interdecadal-changes-fdP7Qo0ttn
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0646.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Southern Ocean (SO) is the region of the World Ocean bordering on Antarctica over which significant exchanges between the atmosphere, the ocean, and the sea ice take place. Here, the strong and nearly unhindered eastward flow of the Antarctic Circumpolar Current plays an important role in mean global climate as it transmits climate anomalies around the hemisphere. Features of interannual variability have been observed to propagate eastward around the SO with the circumpolar flow in the form of a system of coupled anomalies, known as the Antarctic circumpolar wave (ACW). In the present study, the 142-yr series of the Twentieth Century Reanalysis, version 2, dataset (850-hPa geopotential height, sea level pressure, sea surface temperature, surface meridional wind, and surface air temperature) spanning from 1871 to 2012 is used to investigate the presence and variability of ACWs. This examination shows, for the first time, the presence of the ACW before the mid-1950s and interdecadal changes in its characteristics. Modifications in the strength and speed of the circumpolar wave are shown to be linked with large-scale climate changes. Complex empirical orthogonal function analyses confirm that the ACW becomes apparent when the tropical El Niño–Southern Oscillation (ENSO) signal gives rise to the Pacific–South American (PSA) pattern and is a consequence of the constructive combination of the PSA and the subantarctic zonal wavenumber 3. Correlation analyses are also performed to quantify the role played by ENSO teleconnections for the appearance of the ACW, and the impact on the presence of ACWs of three super–El Niño events is investigated.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off