The 6 May 2010 Elevated Supercell during VORTEX2

The 6 May 2010 Elevated Supercell during VORTEX2 AbstractAn elevated supercell from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) on 6 May 2010 is investigated. Observations show that the supercell formed over a stable inversion and was likely decoupled from the surface. Quintessential features of a supercell were present, including a hook echo (albeit bent anticyclonically) and midlevel mesocyclone, and the storm was quasi steady during the observing period. A weak surface cold pool formed, but it was apparently devoid of air originating from midlevels. Idealized modeling using near-storm soundings is employed to clarify the structure and maintenance of this supercell. The simulated storm is decoupled from the surface by the stable layer. Additionally, the reflectivity structure of the simulated supercell is strikingly similar to the observed storm, including its peculiar anticyclonic-curving hook echo. Air parcels above 1 km reached their LFCs as a result of the simulated supercell’s own dynamic lifting, which likely maintained the main updraft throughout its life. In contrast, low-level air in the simulation followed an “up–down” trajectory, being lifted dynamically within the stable layer before becoming strongly negatively buoyant and descending back to the surface. Up–down parcels originating in the lowest 100 m are shown to be a potential driver of severe surface winds. The complementary observations and simulations highlight a range of processes that may act in concert to maintain supercells in environments lacking surface-based CAPE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

The 6 May 2010 Elevated Supercell during VORTEX2

Loading next page...
 
/lp/ams/the-6-may-2010-elevated-supercell-during-vortex2-7Frn0USJ7y
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0329.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAn elevated supercell from the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) on 6 May 2010 is investigated. Observations show that the supercell formed over a stable inversion and was likely decoupled from the surface. Quintessential features of a supercell were present, including a hook echo (albeit bent anticyclonically) and midlevel mesocyclone, and the storm was quasi steady during the observing period. A weak surface cold pool formed, but it was apparently devoid of air originating from midlevels. Idealized modeling using near-storm soundings is employed to clarify the structure and maintenance of this supercell. The simulated storm is decoupled from the surface by the stable layer. Additionally, the reflectivity structure of the simulated supercell is strikingly similar to the observed storm, including its peculiar anticyclonic-curving hook echo. Air parcels above 1 km reached their LFCs as a result of the simulated supercell’s own dynamic lifting, which likely maintained the main updraft throughout its life. In contrast, low-level air in the simulation followed an “up–down” trajectory, being lifted dynamically within the stable layer before becoming strongly negatively buoyant and descending back to the surface. Up–down parcels originating in the lowest 100 m are shown to be a potential driver of severe surface winds. The complementary observations and simulations highlight a range of processes that may act in concert to maintain supercells in environments lacking surface-based CAPE.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Jul 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off