The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part I: ITCZ Region

The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part I: ITCZ Region The Pan American Climate Studies Tropical Eastern Pacific Process Study (TEPPS) obtained a comprehensive set of observations of the structure of clouds and precipitating storms over the eastern tropical Pacific from 28 July to 6 September 1997. The TEPPS data can address a wide range of problems involving tropical oceanic clouds and precipitation. The main goal of the project was to understand why passive microwave satellite algorithms indicate an EW gradient in the precipitation pattern in the tropical Pacific with heavier rainfall in the east while infrared satellite algorithms indicate heavier rainfall in the west. Satellite-derived precipitation estimates are based on characteristics of the vertical structure of precipitating clouds: in the case of infrared methods, cloud-top temperature, and in the case of microwave methods, the vertically integrated ice scattering and/or water absorption determined by the vertical profile of hydrometeors. The premise of the expedition was that by obtaining surface-based radar measurements of the vertical structure of precipitation where and when the differences between the infrared and microwave precipitation estimates were large, it could be determined which satellite method yielded a more accurate pattern of precipitation in the Pacific. This paper describes the types of observations obtained during TEPPS and some preliminary results.A single, well-equipped vessel on its maiden voyage, the National Oceanic and Atmospheric Administration ship Ronald H. Brown, was the base for all observations. Scanning C-band Doppler radar and cloud photography documented the three-dimensional structure of clouds and precipitation in the vicinity of the ship. Upper-air soundings were obtained at 4 h intervals. Surface meteorological and oceanographic instruments and vertically pointing 915-MHz and S-band profilers characterized conditions at the ship itself. During 28.5 days in the eastern Pacific ITCZ, the shipborne radar observed echoes larger than 50 km in maximum horizontal dimension within 100-km radius of the ship 71 of the time and larger than 100 km 55 of the time. The ship spent 16 days on station at 7.8N, 125W and 4 days in the vicinity of Hurricane Guillermo.Samples of surface atmospheric and oceanic data collected during the cruise illustrate the difficulty of interpreting short timescale buoy data time series in the absence of the mesoscale context provided by radar data. The ship sounding data show that the larger-scale, longer-lived convective precipitation activity and organization on timescales of days in the eastern Pacific ITCZ is closely associated with the presence of stronger southerly winds, which in turn suggests that large-scale atmospheric processes such as easterly waves or inertial stability oscillations are a regulating mechanism.Comparison of the ship radar data, satellite IR data, and satellite microwave data shows that part of the reason why the IR and microwave-derived precipitation maps differ is that in the eastern Pacific ITCZ IR cold cloudiness resolves only a subset of the precipitation detected by microwave data. Large precipitating systems (> 100 km scale) of long duration (> 24 h; i.e., the mesoscale organized systems) were reliably associated with cold cloudiness < 235 K. Precipitating systems of shorter duration and/or smaller scale (i.e., the less-organized convection) sometimes reached 235 K and sometimes did not. Satellite microwave data generally agreed with the radar data regarding the location and areal coverage of precipitating regions larger than ~10 km in horizontal scale. However, the microwave algorithm examined in this study had varying degrees of skill in locating the heavier rainfall areas within rainy regions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

The 1997 Pan American Climate Studies Tropical Eastern Pacific Process Study. Part I: ITCZ Region

Loading next page...
 
/lp/ams/the-1997-pan-american-climate-studies-tropical-eastern-pacific-process-KXi5UF900x
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(2000)081<0451:TPACST>2.3.CO;2
Publisher site
See Article on Publisher Site

Abstract

The Pan American Climate Studies Tropical Eastern Pacific Process Study (TEPPS) obtained a comprehensive set of observations of the structure of clouds and precipitating storms over the eastern tropical Pacific from 28 July to 6 September 1997. The TEPPS data can address a wide range of problems involving tropical oceanic clouds and precipitation. The main goal of the project was to understand why passive microwave satellite algorithms indicate an EW gradient in the precipitation pattern in the tropical Pacific with heavier rainfall in the east while infrared satellite algorithms indicate heavier rainfall in the west. Satellite-derived precipitation estimates are based on characteristics of the vertical structure of precipitating clouds: in the case of infrared methods, cloud-top temperature, and in the case of microwave methods, the vertically integrated ice scattering and/or water absorption determined by the vertical profile of hydrometeors. The premise of the expedition was that by obtaining surface-based radar measurements of the vertical structure of precipitation where and when the differences between the infrared and microwave precipitation estimates were large, it could be determined which satellite method yielded a more accurate pattern of precipitation in the Pacific. This paper describes the types of observations obtained during TEPPS and some preliminary results.A single, well-equipped vessel on its maiden voyage, the National Oceanic and Atmospheric Administration ship Ronald H. Brown, was the base for all observations. Scanning C-band Doppler radar and cloud photography documented the three-dimensional structure of clouds and precipitation in the vicinity of the ship. Upper-air soundings were obtained at 4 h intervals. Surface meteorological and oceanographic instruments and vertically pointing 915-MHz and S-band profilers characterized conditions at the ship itself. During 28.5 days in the eastern Pacific ITCZ, the shipborne radar observed echoes larger than 50 km in maximum horizontal dimension within 100-km radius of the ship 71 of the time and larger than 100 km 55 of the time. The ship spent 16 days on station at 7.8N, 125W and 4 days in the vicinity of Hurricane Guillermo.Samples of surface atmospheric and oceanic data collected during the cruise illustrate the difficulty of interpreting short timescale buoy data time series in the absence of the mesoscale context provided by radar data. The ship sounding data show that the larger-scale, longer-lived convective precipitation activity and organization on timescales of days in the eastern Pacific ITCZ is closely associated with the presence of stronger southerly winds, which in turn suggests that large-scale atmospheric processes such as easterly waves or inertial stability oscillations are a regulating mechanism.Comparison of the ship radar data, satellite IR data, and satellite microwave data shows that part of the reason why the IR and microwave-derived precipitation maps differ is that in the eastern Pacific ITCZ IR cold cloudiness resolves only a subset of the precipitation detected by microwave data. Large precipitating systems (> 100 km scale) of long duration (> 24 h; i.e., the mesoscale organized systems) were reliably associated with cold cloudiness < 235 K. Precipitating systems of shorter duration and/or smaller scale (i.e., the less-organized convection) sometimes reached 235 K and sometimes did not. Satellite microwave data generally agreed with the radar data regarding the location and areal coverage of precipitating regions larger than ~10 km in horizontal scale. However, the microwave algorithm examined in this study had varying degrees of skill in locating the heavier rainfall areas within rainy regions.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 11, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off