Testing Climate Models: An Approach

Testing Climate Models: An Approach The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the necessary basis to analyze systematic errors and to withstand critical analysis.Appropriate observing systems must be relevant, global, precise, and calibratable against absolute standards. This paper describes two systems that satisfy these criteria: spectrometers that can measure thermal brightness temperatures with an absolute accuracy of 0.1 K and a spectral resolution of 1 cm1 , and radio occultation measurements of refractivity using satellites of the GPS positioning system, which give data of similar accuracy.Comparison between observations and model predictions requires an array of carefully posed tests. There are at least two ways in which either of these data systems can be used to provide strict, objective tests of climate models. The first looks for the emergence from the natural variability of a predicted climate fingerprint in data taken on different occasions. The second involves the use of high-order statistics to test those interactions that drive the climate system toward a steady state. A correct representation of these interactions is essential for a credible climate model.A set of climate model tests is presented based upon these observational and theoretical ideas. It is an approach that emphasizes accuracy, exposes systematic errors, and is focused and of low cost. It offers a realistic hope for resolving some of the contentious arguments about global change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/testing-climate-models-an-approach-1wmUzAci44
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1998)079<2541:TCMAA>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The scientific merit of decadal climate projections can only be established by means of comparisons with observations. Testing of models that are used to predict climate change is of such importance that no single approach will provide the necessary basis to analyze systematic errors and to withstand critical analysis.Appropriate observing systems must be relevant, global, precise, and calibratable against absolute standards. This paper describes two systems that satisfy these criteria: spectrometers that can measure thermal brightness temperatures with an absolute accuracy of 0.1 K and a spectral resolution of 1 cm1 , and radio occultation measurements of refractivity using satellites of the GPS positioning system, which give data of similar accuracy.Comparison between observations and model predictions requires an array of carefully posed tests. There are at least two ways in which either of these data systems can be used to provide strict, objective tests of climate models. The first looks for the emergence from the natural variability of a predicted climate fingerprint in data taken on different occasions. The second involves the use of high-order statistics to test those interactions that drive the climate system toward a steady state. A correct representation of these interactions is essential for a credible climate model.A set of climate model tests is presented based upon these observational and theoretical ideas. It is an approach that emphasizes accuracy, exposes systematic errors, and is focused and of low cost. It offers a realistic hope for resolving some of the contentious arguments about global change.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Nov 15, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off