Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during the Mid-Holocene: PMIP Simulation Results

Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during the... AbstractBased on the zonal mass streamfunction, the mid-Holocene annual and seasonal changes in the tropical Pacific Walker circulation (PWC) are examined using numerical simulations from the Paleoclimate Modelling Intercomparison Project Phases 2 and 3. Compared to the preindustrial period, the annual mean of the PWC intensity strengthened (with an average increase of 0.26 × 1014 kg2 m−2 s−1 or 5%), and both the western edge and center of the PWC cell shifted westward (by an average of 4° and 3°, respectively) in the majority of the 29 models used for analysis during the mid-Holocene. Those changes were closely related to an overall increase in the equatorial Indo-Pacific east–west sea level pressure difference and low-level trade winds over the equatorial Pacific. Annual mean PWC changes come mainly from boreal warm seasons. In response to the mid-Holocene orbital forcing, Asian and North African monsoon rainfall was strengthened due to large-scale surface warming in the Northern Hemisphere in boreal warm seasons, which led to an intensified large-scale thermally direct east–west circulation, resulting in the enhancement and westward shift of the tropical PWC. The opposite occurred during the mid-Holocene boreal cold seasons. Taken together, the change in the monsoon rainfall over the key tropical regions of Asia and North Africa and associated large-scale east–west circulation, rather than the equatorial Pacific SST change pattern, played a key role in affecting the mid-Holocene PWC strength. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Strengthening and Westward Shift of the Tropical Pacific Walker Circulation during the Mid-Holocene: PMIP Simulation Results

Loading next page...
 
/lp/ams/strengthening-and-westward-shift-of-the-tropical-pacific-walker-m3wAVHeogS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0744.1
Publisher site
See Article on Publisher Site

Abstract

AbstractBased on the zonal mass streamfunction, the mid-Holocene annual and seasonal changes in the tropical Pacific Walker circulation (PWC) are examined using numerical simulations from the Paleoclimate Modelling Intercomparison Project Phases 2 and 3. Compared to the preindustrial period, the annual mean of the PWC intensity strengthened (with an average increase of 0.26 × 1014 kg2 m−2 s−1 or 5%), and both the western edge and center of the PWC cell shifted westward (by an average of 4° and 3°, respectively) in the majority of the 29 models used for analysis during the mid-Holocene. Those changes were closely related to an overall increase in the equatorial Indo-Pacific east–west sea level pressure difference and low-level trade winds over the equatorial Pacific. Annual mean PWC changes come mainly from boreal warm seasons. In response to the mid-Holocene orbital forcing, Asian and North African monsoon rainfall was strengthened due to large-scale surface warming in the Northern Hemisphere in boreal warm seasons, which led to an intensified large-scale thermally direct east–west circulation, resulting in the enhancement and westward shift of the tropical PWC. The opposite occurred during the mid-Holocene boreal cold seasons. Taken together, the change in the monsoon rainfall over the key tropical regions of Asia and North Africa and associated large-scale east–west circulation, rather than the equatorial Pacific SST change pattern, played a key role in affecting the mid-Holocene PWC strength.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial