Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors

Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track... AbstractA statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors

Loading next page...
 
/lp/ams/statistical-dynamical-typhoon-intensity-predictions-in-the-western-m5bI54XDTI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0082.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial