Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors

Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track... AbstractA statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Statistical–Dynamical Typhoon Intensity Predictions in the Western North Pacific Using Track Pattern Clustering and Ocean Coupling Predictors

Loading next page...
 
/lp/ams/statistical-dynamical-typhoon-intensity-predictions-in-the-western-m5bI54XDTI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0082.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off