Statistical Downscaling of a High-Resolution Precipitation Reanalysis Using the Analog Ensemble Method

Statistical Downscaling of a High-Resolution Precipitation Reanalysis Using the Analog Ensemble... AbstractThis study explores the first application of an analog-based method to downscale precipitation estimates from a regional reanalysis. The utilized analog ensemble (AnEn) approach defines a metric with which a set of analogs (i.e., the ensemble) can be sampled from the observations in the training period. From the determined AnEn estimates, the uncertainty of the generated precipitation time series also can easily be assessed. The study investigates tuning parameters of AnEn, such as the choice of predictors or the ensemble size, to optimize the performance. The approach is implemented and tuned on the basis of a set of over 700 rain gauges with 6-hourly measurements for Germany and a 6.2-km regional reanalysis for Europe, which provides the predictors. The obtained AnEn estimates are evaluated against the observations over a 4-yr verification period. With respect to deterministic quality, the results show that AnEn is able to outperform the reanalysis itself depending on location and precipitation intensity. Further, AnEn produces superior results in probabilistic measures against a random-ensemble approach as well as a logistic regression. As a proof of concept, the described implementation allows for the estimation of synthetic probabilistic observation time series for periods for which measurements are not available. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Statistical Downscaling of a High-Resolution Precipitation Reanalysis Using the Analog Ensemble Method

Loading next page...
 
/lp/ams/statistical-downscaling-of-a-high-resolution-precipitation-reanalysis-Wzozd0FWkk
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0380.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study explores the first application of an analog-based method to downscale precipitation estimates from a regional reanalysis. The utilized analog ensemble (AnEn) approach defines a metric with which a set of analogs (i.e., the ensemble) can be sampled from the observations in the training period. From the determined AnEn estimates, the uncertainty of the generated precipitation time series also can easily be assessed. The study investigates tuning parameters of AnEn, such as the choice of predictors or the ensemble size, to optimize the performance. The approach is implemented and tuned on the basis of a set of over 700 rain gauges with 6-hourly measurements for Germany and a 6.2-km regional reanalysis for Europe, which provides the predictors. The obtained AnEn estimates are evaluated against the observations over a 4-yr verification period. With respect to deterministic quality, the results show that AnEn is able to outperform the reanalysis itself depending on location and precipitation intensity. Further, AnEn produces superior results in probabilistic measures against a random-ensemble approach as well as a logistic regression. As a proof of concept, the described implementation allows for the estimation of synthetic probabilistic observation time series for periods for which measurements are not available.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off