Statistical Assessment of the OWZ Tropical Cyclone Tracking Scheme in ERA-Interim

Statistical Assessment of the OWZ Tropical Cyclone Tracking Scheme in ERA-Interim AbstractThe Okubo–Weiss–Zeta (OWZ) tropical cyclone (TC) detection scheme, which has been used to detect TCs in climate, seasonal prediction, and weather forecast models, is assessed on its ability to produce a realistic TC track climatology in the ERA-Interim product over the 25-yr period 1989 to 2013. The analysis focuses on TCs that achieve gale-force (17 m s−1) sustained winds. Objective criteria were established to define TC tracks once they reach gale force for both observed and detected TCs. A lack of consistency between storm tracks preceding this level of intensity led these track segments to be removed from the analysis. A subtropical jet (STJ) diagnostic is used to terminate transitioning TCs and is found to be preferable to a fixed latitude cutoff point. TC tracks were analyzed across seven TC basins, using a probabilistic clustering technique that is based on regression mixture models. The technique grouped TC tracks together based on their geographical location and shape of trajectory in five separate “cluster regions” around the globe. A mean trajectory was then regressed for each cluster that showed good agreement between the detected and observed tracks. Other track measures such as interannual TC days and translational speeds were also replicated to a satisfactory level, with TC days showing limited sensitivity to different latitude cutoff points. Successful validation in reanalysis data allows this model- and grid-resolution-independent TC tracking scheme to be applied to climate models with confidence in its ability to identify TC tracks in coarse-resolution climate models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Statistical Assessment of the OWZ Tropical Cyclone Tracking Scheme in ERA-Interim

Loading next page...
 
/lp/ams/statistical-assessment-of-the-owz-tropical-cyclone-tracking-scheme-in-48Xe0lGIfW
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0548.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe Okubo–Weiss–Zeta (OWZ) tropical cyclone (TC) detection scheme, which has been used to detect TCs in climate, seasonal prediction, and weather forecast models, is assessed on its ability to produce a realistic TC track climatology in the ERA-Interim product over the 25-yr period 1989 to 2013. The analysis focuses on TCs that achieve gale-force (17 m s−1) sustained winds. Objective criteria were established to define TC tracks once they reach gale force for both observed and detected TCs. A lack of consistency between storm tracks preceding this level of intensity led these track segments to be removed from the analysis. A subtropical jet (STJ) diagnostic is used to terminate transitioning TCs and is found to be preferable to a fixed latitude cutoff point. TC tracks were analyzed across seven TC basins, using a probabilistic clustering technique that is based on regression mixture models. The technique grouped TC tracks together based on their geographical location and shape of trajectory in five separate “cluster regions” around the globe. A mean trajectory was then regressed for each cluster that showed good agreement between the detected and observed tracks. Other track measures such as interannual TC days and translational speeds were also replicated to a satisfactory level, with TC days showing limited sensitivity to different latitude cutoff points. Successful validation in reanalysis data allows this model- and grid-resolution-independent TC tracking scheme to be applied to climate models with confidence in its ability to identify TC tracks in coarse-resolution climate models.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off