Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the Early Twentieth Century

Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the... AbstractIn the Mediterranean Andes region (MA; 30°–37°S), the main rivers are largely fed by melting snowpack and provide freshwater to around 10 million people on both sides of the Andes Mountains. Water resources in the MA are under pressure because of the extensive development of industrial agriculture and mining activities. This pressure is increasing as the region faces one of its worst recorded droughts. Previous studies have pointed to El Niño–Southern Oscillation (ENSO) as the main climatic force impacting the MA. However, the role of decadal and multidecadal climate variability, their spatial patterns, and the recurrence of long-term droughts remains poorly studied. In an attempt to better understand these factors, spatial and temporal patterns of hydroclimatic variability are analyzed using an extensive database of streamflow, precipitation, and snowpack covering the period between 1910 and 2011. These analyses are based on the combination of correlation, principal components, and kernel estimation techniques. Despite a general common pattern across the MA, the results presented here identify two hydroclimatic subregions, located north and south of 34°S. While the interannual variability associated with ENSO is slightly stronger north of 34°S, the variability associated with the Pacific decadal oscillation (PDO) and/or the interdecadal Pacific oscillation (IPO) index shows similar patterns in both regions. However, variations produced by the IPO forcing seem to be greater in the southern subregion since 1975. The estimations presented here on drought recurrence reveal a generalized increase in dry extremes since the 1950s. These findings suggest that the northern MA is more vulnerable to changes in hydrology and climate than the southern MA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°–37°S) since the Early Twentieth Century

Loading next page...
 
/lp/ams/spatiotemporal-variations-in-hydroclimate-across-the-mediterranean-aaVkoBZPis
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0004.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the Mediterranean Andes region (MA; 30°–37°S), the main rivers are largely fed by melting snowpack and provide freshwater to around 10 million people on both sides of the Andes Mountains. Water resources in the MA are under pressure because of the extensive development of industrial agriculture and mining activities. This pressure is increasing as the region faces one of its worst recorded droughts. Previous studies have pointed to El Niño–Southern Oscillation (ENSO) as the main climatic force impacting the MA. However, the role of decadal and multidecadal climate variability, their spatial patterns, and the recurrence of long-term droughts remains poorly studied. In an attempt to better understand these factors, spatial and temporal patterns of hydroclimatic variability are analyzed using an extensive database of streamflow, precipitation, and snowpack covering the period between 1910 and 2011. These analyses are based on the combination of correlation, principal components, and kernel estimation techniques. Despite a general common pattern across the MA, the results presented here identify two hydroclimatic subregions, located north and south of 34°S. While the interannual variability associated with ENSO is slightly stronger north of 34°S, the variability associated with the Pacific decadal oscillation (PDO) and/or the interdecadal Pacific oscillation (IPO) index shows similar patterns in both regions. However, variations produced by the IPO forcing seem to be greater in the southern subregion since 1975. The estimations presented here on drought recurrence reveal a generalized increase in dry extremes since the 1950s. These findings suggest that the northern MA is more vulnerable to changes in hydrology and climate than the southern MA.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Jul 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off