Spatiotemporal Decompositions of Summer Drought in China and Its Teleconnection with Global Sea Surface Temperatures during 1901–2012

Spatiotemporal Decompositions of Summer Drought in China and Its Teleconnection with Global Sea... AbstractThe teleconnection between the summer (June–August) Palmer drought severity index (PDSI) in China and seasonal global sea surface temperatures (SSTs) is investigated at both spatial and temporal scales during 1901–2012. Three pairs of coupled spatial patterns for China’s PDSI and global SST anomalies are identified using the singular value decomposition (SVD) method. With a combination of ensemble empirical mode decomposition (EEMD) and multiple linear regression (MLR) analysis, it is found that the first mode, the sea ice loss–global warming pattern, causes wetness over north and northeastern China and drying over Inner Mongolia. The North Pacific Current (NPC) mode shows that a warmer NPC corresponds to a wetter summer over eastern China and a drier one over the Tibetan Plateau. Both NPC and Pacific decadal oscillation (PDO) affect moisture variability in northern China and over the Tibetan Plateau, with the NPC mode more important in the centennial scale, while the PDO mode is more important in the multidecadal scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Spatiotemporal Decompositions of Summer Drought in China and Its Teleconnection with Global Sea Surface Temperatures during 1901–2012

Loading next page...
 
/lp/ams/spatiotemporal-decompositions-of-summer-drought-in-china-and-its-NsYLDIhUZt
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0405.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe teleconnection between the summer (June–August) Palmer drought severity index (PDSI) in China and seasonal global sea surface temperatures (SSTs) is investigated at both spatial and temporal scales during 1901–2012. Three pairs of coupled spatial patterns for China’s PDSI and global SST anomalies are identified using the singular value decomposition (SVD) method. With a combination of ensemble empirical mode decomposition (EEMD) and multiple linear regression (MLR) analysis, it is found that the first mode, the sea ice loss–global warming pattern, causes wetness over north and northeastern China and drying over Inner Mongolia. The North Pacific Current (NPC) mode shows that a warmer NPC corresponds to a wetter summer over eastern China and a drier one over the Tibetan Plateau. Both NPC and Pacific decadal oscillation (PDO) affect moisture variability in northern China and over the Tibetan Plateau, with the NPC mode more important in the centennial scale, while the PDO mode is more important in the multidecadal scale.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off