Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast Errors?

Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast... AbstractSeasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics, SST prediction skill in the tropical Pacific clearly exceeds prediction skill over the Atlantic and Indian Oceans. Such skill variations can be due to spatial variations in observing system used for forecast initializations or systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of the coupled ocean–atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent characteristics of climate system. This inference is supported based on the following analyses. SST prediction skill is higher over the regions where coupled air–sea interactions (or Bjerknes feedback) are inferred to be stronger. Coupled air–sea interactions, and the longer time scales associated with them, imprint longer memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also consistent with differences in the ocean–atmosphere interaction regimes that distinguish between whether ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional differences in the spatial characteristics of ocean–atmosphere interactions, in turn, also govern the spatial variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an artifact of the observing system or model biases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast Errors?

Loading next page...
 
/lp/ams/spatial-variability-in-seasonal-prediction-skill-of-ssts-inherent-Z0xG02MD2i
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0279.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSeasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics, SST prediction skill in the tropical Pacific clearly exceeds prediction skill over the Atlantic and Indian Oceans. Such skill variations can be due to spatial variations in observing system used for forecast initializations or systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of the coupled ocean–atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent characteristics of climate system. This inference is supported based on the following analyses. SST prediction skill is higher over the regions where coupled air–sea interactions (or Bjerknes feedback) are inferred to be stronger. Coupled air–sea interactions, and the longer time scales associated with them, imprint longer memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also consistent with differences in the ocean–atmosphere interaction regimes that distinguish between whether ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional differences in the spatial characteristics of ocean–atmosphere interactions, in turn, also govern the spatial variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an artifact of the observing system or model biases.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial