Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast Errors?

Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast... AbstractSeasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics, SST prediction skill in the tropical Pacific clearly exceeds prediction skill over the Atlantic and Indian Oceans. Such skill variations can be due to spatial variations in observing system used for forecast initializations or systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of the coupled ocean–atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent characteristics of climate system. This inference is supported based on the following analyses. SST prediction skill is higher over the regions where coupled air–sea interactions (or Bjerknes feedback) are inferred to be stronger. Coupled air–sea interactions, and the longer time scales associated with them, imprint longer memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also consistent with differences in the ocean–atmosphere interaction regimes that distinguish between whether ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional differences in the spatial characteristics of ocean–atmosphere interactions, in turn, also govern the spatial variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an artifact of the observing system or model biases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Spatial Variability in Seasonal Prediction Skill of SSTs: Inherent Predictability or Forecast Errors?

Loading next page...
 
/lp/ams/spatial-variability-in-seasonal-prediction-skill-of-ssts-inherent-Z0xG02MD2i
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0279.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSeasonal prediction skill of SSTs from coupled models has considerable spatial variations. In the tropics, SST prediction skill in the tropical Pacific clearly exceeds prediction skill over the Atlantic and Indian Oceans. Such skill variations can be due to spatial variations in observing system used for forecast initializations or systematic errors in the seasonal prediction systems, or they could be a consequence of inherent properties of the coupled ocean–atmosphere system leaving a fingerprint on the spatial structure of SST predictability. Out of various alternatives, the spatial variability in SST prediction skill is argued to be a consequence of inherent characteristics of climate system. This inference is supported based on the following analyses. SST prediction skill is higher over the regions where coupled air–sea interactions (or Bjerknes feedback) are inferred to be stronger. Coupled air–sea interactions, and the longer time scales associated with them, imprint longer memory and thereby support higher SST prediction skill. The spatial variability of SST prediction skill is also consistent with differences in the ocean–atmosphere interaction regimes that distinguish between whether ocean drives the atmosphere or atmosphere drives the ocean. Regions of high SST prediction skill generally coincide with regions where ocean forces the atmosphere. Such regimes correspond to regions where oceanic variability is on longer time scales compared to regions where atmosphere forces the ocean. Such regional differences in the spatial characteristics of ocean–atmosphere interactions, in turn, also govern the spatial variations in SST skill, making spatial variations in skill an intrinsic property of the climate system and not an artifact of the observing system or model biases.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jan 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off