Space and Time Scales in Ambient Ozone Data

Space and Time Scales in Ambient Ozone Data This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors discuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series data, namely, short-term (weather related) variations, seasonal (solar induced) variations, and long-term (climatepolicy related) trends, in order to provide a better understanding of the underlying physical processes that affect ambient ozone levels. Spatial and temporal information in ozone time series data, obscure prior to separation, is clearly displayed by simple laws afterward. In addition, process changes due to policy or climate changes may be very small and invisible unless they are separated from weather and seasonality. Successful analysis of the ozone problem, therefore, requires a careful separation of seasonal and synoptic components.The authors show that baseline ozone retains global information on the scale of more than 2 months in time and about 300 km in space. The short-term ozone component, attributable to short-term weather and precursor emission fluctuations, is highly correlated in space, retaining 50 of the short-term information at distances ranging from 350 to 400 km; in time, short-term ozone resembles a Markov process with 1-day lag correlations ranging from 0.2 to 0.5. The correlation structure of short-term ozone permits highly accurate predictions of ozone concentrations up to distances of about 600 km from a given monitor. These results clearly demonstrate that ozone is a regional-scale problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/space-and-time-scales-in-ambient-ozone-data-D30ayxvkJX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1997)078<2153:SATSIA>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors discuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series data, namely, short-term (weather related) variations, seasonal (solar induced) variations, and long-term (climatepolicy related) trends, in order to provide a better understanding of the underlying physical processes that affect ambient ozone levels. Spatial and temporal information in ozone time series data, obscure prior to separation, is clearly displayed by simple laws afterward. In addition, process changes due to policy or climate changes may be very small and invisible unless they are separated from weather and seasonality. Successful analysis of the ozone problem, therefore, requires a careful separation of seasonal and synoptic components.The authors show that baseline ozone retains global information on the scale of more than 2 months in time and about 300 km in space. The short-term ozone component, attributable to short-term weather and precursor emission fluctuations, is highly correlated in space, retaining 50 of the short-term information at distances ranging from 350 to 400 km; in time, short-term ozone resembles a Markov process with 1-day lag correlations ranging from 0.2 to 0.5. The correlation structure of short-term ozone permits highly accurate predictions of ozone concentrations up to distances of about 600 km from a given monitor. These results clearly demonstrate that ozone is a regional-scale problem.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 23, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off