Space and Time Scales in Ambient Ozone Data

Space and Time Scales in Ambient Ozone Data This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors discuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series data, namely, short-term (weather related) variations, seasonal (solar induced) variations, and long-term (climatepolicy related) trends, in order to provide a better understanding of the underlying physical processes that affect ambient ozone levels. Spatial and temporal information in ozone time series data, obscure prior to separation, is clearly displayed by simple laws afterward. In addition, process changes due to policy or climate changes may be very small and invisible unless they are separated from weather and seasonality. Successful analysis of the ozone problem, therefore, requires a careful separation of seasonal and synoptic components.The authors show that baseline ozone retains global information on the scale of more than 2 months in time and about 300 km in space. The short-term ozone component, attributable to short-term weather and precursor emission fluctuations, is highly correlated in space, retaining 50 of the short-term information at distances ranging from 350 to 400 km; in time, short-term ozone resembles a Markov process with 1-day lag correlations ranging from 0.2 to 0.5. The correlation structure of short-term ozone permits highly accurate predictions of ozone concentrations up to distances of about 600 km from a given monitor. These results clearly demonstrate that ozone is a regional-scale problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/space-and-time-scales-in-ambient-ozone-data-D30ayxvkJX
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1997)078<2153:SATSIA>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors discuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series data, namely, short-term (weather related) variations, seasonal (solar induced) variations, and long-term (climatepolicy related) trends, in order to provide a better understanding of the underlying physical processes that affect ambient ozone levels. Spatial and temporal information in ozone time series data, obscure prior to separation, is clearly displayed by simple laws afterward. In addition, process changes due to policy or climate changes may be very small and invisible unless they are separated from weather and seasonality. Successful analysis of the ozone problem, therefore, requires a careful separation of seasonal and synoptic components.The authors show that baseline ozone retains global information on the scale of more than 2 months in time and about 300 km in space. The short-term ozone component, attributable to short-term weather and precursor emission fluctuations, is highly correlated in space, retaining 50 of the short-term information at distances ranging from 350 to 400 km; in time, short-term ozone resembles a Markov process with 1-day lag correlations ranging from 0.2 to 0.5. The correlation structure of short-term ozone permits highly accurate predictions of ozone concentrations up to distances of about 600 km from a given monitor. These results clearly demonstrate that ozone is a regional-scale problem.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 23, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off