Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River

Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River AbstractSoil moisture monitoring with in situ technology is a time-consuming and costly endeavor for which a method of increasing the resolution of spatial estimates across in situ networks is necessary. Using a simple hydrologic model, the estimation capacity of an in situ watershed network can be increased beyond the station distribution by using available precipitation, soil, and topographic information. A study site was selected on the Iowa River, characterized by homogeneous soil and topographic features, reducing the variables to precipitation only. Using 10-km precipitation estimates from the North American Land Data Assimilation System (NLDAS) for 2013, high-resolution estimates of surface soil moisture were generated in coordination with an in situ network, which was deployed as part of the Iowa Flood Studies (IFloodS). A simple, bucket model for soil moisture at each in situ sensor was calibrated using four precipitation products and subsequently validated at both the sensor for which it was calibrated and other proximal sensors, the latter after a bias correction step. Average RMSE values of 0.031 and 0.045 m3 m−3 were obtained for models validated at the sensor for which they were calibrated and at other nearby sensors, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River

Loading next page...
 
/lp/ams/soil-moisture-model-calibration-and-validation-an-ars-watershed-on-the-xikzzDiTMG
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-14-0145.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSoil moisture monitoring with in situ technology is a time-consuming and costly endeavor for which a method of increasing the resolution of spatial estimates across in situ networks is necessary. Using a simple hydrologic model, the estimation capacity of an in situ watershed network can be increased beyond the station distribution by using available precipitation, soil, and topographic information. A study site was selected on the Iowa River, characterized by homogeneous soil and topographic features, reducing the variables to precipitation only. Using 10-km precipitation estimates from the North American Land Data Assimilation System (NLDAS) for 2013, high-resolution estimates of surface soil moisture were generated in coordination with an in situ network, which was deployed as part of the Iowa Flood Studies (IFloodS). A simple, bucket model for soil moisture at each in situ sensor was calibrated using four precipitation products and subsequently validated at both the sensor for which it was calibrated and other proximal sensors, the latter after a bias correction step. Average RMSE values of 0.031 and 0.045 m3 m−3 were obtained for models validated at the sensor for which they were calibrated and at other nearby sensors, respectively.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Jun 25, 2015

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off