SNOWMIP2: An Evaluation of Forest Snow Process Simulations

SNOWMIP2: An Evaluation of Forest Snow Process Simulations The Northern Hemisphere has large areas that are forested and seasonally snow covered. Compared with open areas, forest canopies strongly influence interactions between the atmosphere and snow on the ground by sheltering the snow from wind and solar radiation and by intercepting falling snow; these influences have important consequences for the meteorology, hydrology, and ecology of forests. Many of the land surface models used in meteorological and hydrological forecasting now include representations of canopy snow processes, but these have not been widely tested in comparison with observations. Phase 2 of the Snow Model Intercomparison Project (SnowMIP2) was therefore designed as an intercomparison of surface mass and energy balance simulations for snow in forested areas. Model forcing and calibration data for sites with paired forested and open plots were supplied to modeling groups. Participants in 11 countries contributed output from 33 models, and the results are published here for sites in Canada, the United States, and Switzerland. On average, the models perform fairly well in simulating snow accumulation and ablation, although there is a wide intermodal spread and a tendency to underestimate differences in snow mass between open and forested areas. Most models capture the large differences in surface albedos and temperatures between forest canopies and open snow well. There is, however, a strong tendency for models to underestimate soil temperature under snow, particularly for forest sites, and this would have large consequences for simulations of runoff and biological processes in the soil. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/snowmip2-an-evaluation-of-forest-snow-process-simulations-0rEm9y2r4a
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2009BAMS2629.1
Publisher site
See Article on Publisher Site

Abstract

The Northern Hemisphere has large areas that are forested and seasonally snow covered. Compared with open areas, forest canopies strongly influence interactions between the atmosphere and snow on the ground by sheltering the snow from wind and solar radiation and by intercepting falling snow; these influences have important consequences for the meteorology, hydrology, and ecology of forests. Many of the land surface models used in meteorological and hydrological forecasting now include representations of canopy snow processes, but these have not been widely tested in comparison with observations. Phase 2 of the Snow Model Intercomparison Project (SnowMIP2) was therefore designed as an intercomparison of surface mass and energy balance simulations for snow in forested areas. Model forcing and calibration data for sites with paired forested and open plots were supplied to modeling groups. Participants in 11 countries contributed output from 33 models, and the results are published here for sites in Canada, the United States, and Switzerland. On average, the models perform fairly well in simulating snow accumulation and ablation, although there is a wide intermodal spread and a tendency to underestimate differences in snow mass between open and forested areas. Most models capture the large differences in surface albedos and temperatures between forest canopies and open snow well. There is, however, a strong tendency for models to underestimate soil temperature under snow, particularly for forest sites, and this would have large consequences for simulations of runoff and biological processes in the soil.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Aug 10, 2009

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off