Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements: Occurrence, Nature, and Impact on Vertical Mixing

Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements:... AbstractThe contribution of turbulent mixing to heat and tracer transport in the tropical tropopause layer (TTL) is poorly constrained, partly owing to a lack of direct observations. Here, the authors use high-resolution (20 Hz) airborne measurements to study the occurrence and properties of small-scale (<100 m) wind fluctuations in the TTL (14–19 km) over the tropical Pacific. The fluctuations are highly intermittent and appear localized within shallow (100 m) patches. Furthermore, active turbulent events are more frequent at low altitude, near deep convection, and within layers of low gradient Richardson number. A case study emphasizes the link between the turbulent events and the occurrence of inertio-gravity waves having small horizontal or vertical scale. To evaluate the impact of the observed fluctuations on tracer mixing, their characteristics are examined. During active events, they are in broad agreement with inertial-range turbulence theory: the motions are close to 3D isotropic and the spectra follow a −5/3 power-law scaling. The diffusivity induced by turbulent bursts is estimated to be on the order of 10−1 m2 s−1 and increases from the top to the bottom of the TTL (from ~2 × 10−2 to ~3 × 10−1 m2 s−1). Given the uncertainties involved in the estimate, this is in reasonable agreement (about a factor of 3–4 lower) with the parameterized turbulent diffusivity in ERA-Interim, but it disagrees with other observational estimates from radar and radiosondes. The magnitude of the consequent vertical transport depends on the altitude and the tracer; for the species considered, it is generally smaller than that induced by the mean tropical upwelling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements: Occurrence, Nature, and Impact on Vertical Mixing

Loading next page...
 
/lp/ams/small-scale-wind-fluctuations-in-the-tropical-tropopause-layer-from-R1qnzI4zrS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0010.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe contribution of turbulent mixing to heat and tracer transport in the tropical tropopause layer (TTL) is poorly constrained, partly owing to a lack of direct observations. Here, the authors use high-resolution (20 Hz) airborne measurements to study the occurrence and properties of small-scale (<100 m) wind fluctuations in the TTL (14–19 km) over the tropical Pacific. The fluctuations are highly intermittent and appear localized within shallow (100 m) patches. Furthermore, active turbulent events are more frequent at low altitude, near deep convection, and within layers of low gradient Richardson number. A case study emphasizes the link between the turbulent events and the occurrence of inertio-gravity waves having small horizontal or vertical scale. To evaluate the impact of the observed fluctuations on tracer mixing, their characteristics are examined. During active events, they are in broad agreement with inertial-range turbulence theory: the motions are close to 3D isotropic and the spectra follow a −5/3 power-law scaling. The diffusivity induced by turbulent bursts is estimated to be on the order of 10−1 m2 s−1 and increases from the top to the bottom of the TTL (from ~2 × 10−2 to ~3 × 10−1 m2 s−1). Given the uncertainties involved in the estimate, this is in reasonable agreement (about a factor of 3–4 lower) with the parameterized turbulent diffusivity in ERA-Interim, but it disagrees with other observational estimates from radar and radiosondes. The magnitude of the consequent vertical transport depends on the altitude and the tracer; for the species considered, it is generally smaller than that induced by the mean tropical upwelling.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Nov 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off